
University of Amsterdam

Dept. of Social Science Informatics

(SWI)

Roetersstraat 15, 1018 WB Amsterdam

The Netherlands

Tel. (+31) 20 5256786

PceDraw

An example of using PCE-4

Jan Wielemaker

jan@swi.psy.uva.nl

This document describes the design and implementation of PceDraw, a drawing

tool written in PCE-4/Prolog. PceDraw exploits many of the features of PCE

and is written according to our current ideas on using PCE/Prolog.

Copyright
c
 1991 Jan Wielemaker

Contents

1 Introduction 4

2 Design 6

2.1 Functional overview : 6

2.2 Realisation in PCE : 7

2.2.1 Creating an application : 7

2.2.1.1 Using PCE as a library : 8

2.2.1.2 Extending PCE : 9

2.3 Class organisation and communication : 11

2.3.1 Overall tool communication : 11

2.3.2 Drawing area and shapes : 12

2.3.3 User Events (Shapes and gestures) : : : : : : : : : : : : : : : : : : : 12

3 The Sources 13

3.1 Source �le \draw.pl" : 14

3.1.1 Linking other �les : 14

3.1.2 Entry point : 15

3.1.3 Class draw : 15

3.1.4 Command area (dialog) : 17

3.1.5 Initial prototypes : 20

3.1.6 Finding parts : 20

3.1.7 Modes : 21

3.1.8 Feedback : 21

3.1.9 Quit : 22

3.2 Source �le \canvas.pl" : 24

3.2.1 Initialise : 25

3.2.2 Unlink : 26

3.2.3 Modi�cations : 26

3.2.4 Selection : 26

3.2.5 Imports : 27

3.2.6 Edit : 27

3.2.7 Alignment : 28

3.2.8 Load/save : 31

3.2.9 Postscript : 33

3.2.10 Modes : 35

1

3.3 Source �le \shapes.pl" : 36

3.3.1 Common : 36

3.3.2 Box : 37

3.3.3 Ellipse : 37

3.3.4 Text : 38

3.3.5 Line : 39

3.3.6 Path : 40

3.3.7 Connections : 41

3.3.8 Bitmap : 41

3.3.9 Compounds : 41

3.4 Source �le \gesture.pl" : 44

3.4.1 Recogniser objects : 44

3.4.2 Select : 46

3.4.3 Create from prototype : 48

3.4.4 Create resizable shape : 48

3.4.5 Line : 49

3.4.6 Path : 51

3.4.7 Text : 54

3.4.8 Move : 55

3.4.9 Resize : 56

3.4.10 Connect : 58

3.4.11 Connect create handle : 59

3.4.12 Shape popup : 61

3.5 Source �le \menu.pl" : 63

3.5.1 Icon menu : 63

3.5.2 Create : 64

3.5.3 Delete : 65

3.5.4 Save/load : 65

3.5.5 Icons : 66

3.5.6 Prototypes : 67

3.5.7 Attributes : 68

3.5.8 Activation : 68

3.6 Source �le \attribute.pl" : 69

3.6.1 Menu's : 71

3.6.2 Fonts : 73

3.6.3 Quit : 75

3.6.4 Client communication : 76

4 Conclusions 78

A Programming Style 79

A.1 Organisation of source�les : 79

A.2 Organisation of a class de�nition : 79

A.2.1 Class de�nition template : 80

A.3 Choosing names : 82

A.4 Predicates or methods? : 82

2

A.5 Method arguments : 82

A.6 Layout conventions : 83

3

Chapter 1

Introduction

One of the aims of writing PceDraw is to provide users of PCE who have made their

�rst steps in using the system with an example that explains how large applications can

be realised using PCE/Prolog. This document motivates the decisions taken to arrive at

PceDraw, both at the level of the overall design and at the level of the detailed design and

implementation.

This document is part of the documentation of PCE-4. The complete documentation

consists of:

� Programming in PCE/Prolog [Wielemaker & Anjewierden, 1992b]

This document is an introduction to programming in PCE/Prolog. It provides the

background material to understand the other documentation.

� PCE-4 Functional Overview [Wielemaker & Anjewierden, 1992a]

This document provides an overview of the functionality provided by PCE. It may

be used to �nd relevant PCE material to satisfy a particular functionality in your

program.

� PCE-4 User De�ned Classes Manual [Wielemaker, 1992]

This document describes the de�nition of PCE classes from Prolog. PceDraw is

implemented as a set of user-de�ned classes.

� The online PCE Reference Manual

The paper documents are intended to provide an overview of the function-

ality and architecture of PCE. The online manual provides detailed descrip-

tions of classes, methods, etc. which may be accessed from various viewpoints.

[Wielemaker & Anjewierden, 1992b] describes how to use the online manual.

This document aims at PCE users who have understood the basics of PCE and have

some experience with Prolog. In its �nal context (as an appendix) the tutorial should

provide the necessary material. When new constructs are introduced in this document

they are often explained. It is adviced to read chapter 2 �rst and proceed with the

introduction and the �rst section of chapter 3. The remaining material may be used as a

set of examples. At the end of this document is an index, indicating references to methods,

predicates and �les discussed.

4

Chapter 2 explains the overall design of PceDraw. Chapter 3 contains a brief overview

of the organisation of the sources, followed by the annotated sources.

Two chapters that will be part of the tutorial have been added as appedices to this

manual. The �rst deals with style conventions for the de�nition of classes and the second

with using global object references (e.g. @same center).

5

Chapter 2

Design

2.1 Functional overview

PceDraw is a drawing tool for creating structured diagrams: ow-charts, diagrams cap-

turing architecture, etc. In this kind of diagrams there is usually a small number of

reoccurring shapes that have to be linked to each other. For this reason, the editor should

allow the user to create/save/load a library of prototypes. A typical example of such a

prototype is a box with centered text. Lines between shapes often represent semantical

relations and therefore should remain connected to the shape if the shape is moved/resized

and should be destroyed when the shape is deleted.

This document aims at the software design and implementation of PceDraw and there-

fore the requirements analysis and functional speci�cation is very brief. For getting a clear

view on the functionality it is adviced to run PceDraw. It can be started from xpce by

the command:

1 ?- pcedraw.

PceDraw has been designed from these principles. The initial tool consist of three areas:

the drawing area itself, a menu with available prototypes and a general command and

feedback area. Besides creating, moving, resizing, etc., the tool must be able to edit shape

attributes such as the thickness of the drawing pen and the font. This functionality is

dealt with by an attribute editor which can be launched in a separate toplevel window.

PceDraw provides two kinds of menu's. All commands are available through pulldown

menus in the `command area' of the tool. Frequently used commands on a single shape

are also available through a popup-menu associated with each shape. This approach has

several advantages. The pulldown menus provide a place where all functionality can be

found (except selecting a prototype and operations performed via direct-manipulation such

as selecting, moving and resizing shapes), while the popup menus allows for fast access to

the commonly used commands.

The current version of PceDraw does not support keyboard accelerators. De�ning

accelerators should be supported by PCE's dialog primitives. This will be implemented

later.

6

2.2 Realisation in PCE

After the functionality is speci�ed, PCE primitives that serve as a starting point for the

realisation be selected. It is hard to tell how this should be done. PCE contains a large

amount of functionality that can be combined in several ways. Examples, the tutorial and

the online manual (manpce/[0-1]) are the starting point. Below is a brief list with the

main choices for PceDraw. See the various source�les in chapter 3 for details.

� Overall tool

A frame is a collection of windows and provides an ideal starting point for the overall

tool.

� Drawing area

A picture is a window indended for displaying arbitrary graphical objects.

� Prototype menu

Two possibilities: 1) dialog + menu + menu item or 2) picture + bitmap. See

discussion in `menu.pl'.

� Command area

A dialog with a list of pulldown menus organised in a menu bar and a label for

feedback messages.

� Shapes

Appropriate PCE graphical (box, ellipse, text, line, etc.).

� Prototypes

A device is a collection of graphicals that can be manipulated as a single unit. The

 klone method can be used to create instances.

� `Settings' (or attribute) editor

A dialog window with appropriate dialog items for the various settings.

� (Direct) manipulation of shapes

recognisers can be attached to the various shapes. We can start from the various

standard gestures de�ned in PCE. PceDraw can operate in various modes (select,

create, edit text, etc.). A mode attribute can be attached to the drawing area, where

it can easily be found from the recognisers, so they can use it as a condition.

� Load and Save

Both prototypes and drawings must be saved and loaded to/from Unix �les. This

can be realised using PCE's behaviour `Object !save in �le' and `File object'.

2.2.1 Creating an application

After we have selected the PCE building blocks from which to start, we have to extend

them so that they ful�ll our exact needs and cooperate to form the drawing tool. There

are two ways to do this. The �rst is to regard PCE as a class/object library and ex-

tend/combine objects via `free-style' Prolog code. In this case our entire tool is (from the

outside) a collection of Prolog predicates. The second possibility is to create subclasses

from the basic PCE classes. Using the latter approach, the entire tool is a class of which

7

an instance is created. What are the advantages of both approaches? We will look at

them from an example.

Suppose we have a drawing area and displaying an object on it should change a `mod-

i�ed' attribute associated with the drawing area. The PCE class picture is our starting

point. Class picture does not have an instance variable `modi�ed', so our task is to add

such a variable and provide means to display an object on it and set the modi�ed attribute.

2.2.1.1 Using PCE as a library

When using PCE as a library, the prede�ned objects and classes of PCE are regarded as a

library of functionality we can access via the Prolog predicates new/2, send/[2-12] and

get/[3-13]. There are two ways to modify or extend the behaviour of an object from a

standard PCE class. The �rst is to write Prolog predicates that perform certain operations

on the object(s). The second is to use PCE's object-level programming mechanisms to

extend the object. Below is the code that results from using Prolog predicates.

create_canvas(P) :-

new(P, picture),

send(P, attribute, attribute(modified, @off)).

display_canvas(P, Graphical, Point) :-

send(P, display, Graphical, Point),

send(P, modified, @on).

Although this technique does not create a new (PCE) class, it does create a new `con-

ceptual' kind of object: the canvas. `Display' is a method of this new kind. Depending

on whether the method is de�ned in the PCE class or in Prolog, the behaviour should be

invoked either via send/[2-12] or with the Prolog predicate:

1 ?- send(P, selection, @nil).

2 ?- display_canvas(P, box(30,30), @default).

The syntactical di�erence makes it clear whether the action initiates a Prolog predicate

|and thus a part of the application| or a method of the PCE library. A programmer

using this conceptual kind of object must be aware whether the method is part of PCE or

part of the extension. Calling the raw PCE method might lead to inconsistencies: if the

user invokes

1 ?- send(P, display, box(30,30)).

the contents of the canvas will be modi�ed, but the modi�ed attribute won't change.

Extending the object

The second possibility uses programming PCE at the object level. Methods can be assigned

to objects similiar to classes. The method object consists of three parts: the name or

selector, the type speci�cation and the action or message. The type speci�cation is a

8

vector with the same number of arguments as expected by the method. Each element of

the vector speci�es the corresponding type. See the online manual, topic `types'. While

a message implementing a method is executed, @arg1 is bound the the �rst argument

provided, @arg2 to the second, etc. See also `Object !send method'.

create_canvas(P) :-

new(P, picture),

send(P, attribute, attribute(modified, @off)),

send(P, send_method,

send_method(display, vector(graphical, '[point]'),

block(message(P, send_class,

display, @arg1, @arg2),

message(P, modified, @on)))).

Using this solution, the user of the canvas does not need to know that the!displaymethod

of the raw PCE object has been rede�ned. The new object has a method named!display

which not only takes care of displaying the object, but also updates the modi�ed attribute.

Remaining problems are:

� PCE object are created using new/2, while application objects area created via a

Prolog predicate.

� From the outside one cannot tell easily whether the object is a raw PCE object or

a modi�ed one.

� If many instances are created, each of them will have method objects attached to

them.

� Writing code like this requires the user to know PCE's programming classes (block,

if, and, etc.).

� If the implementation cannot be handled by PCE's programming classes a message

to @prolog is necessary. In this case the implementation will be spread over two

locations.

� The code is attached to the object. If |during debugging| this code needs to be

changed there is little alternative then destroying the object and recreating it.

� If the object is saved using `Object !save in �le' or kloned using `Object klone',

the code part is saved/kloned as well.

� It is di�cult to read and write.

Object level programming is not used intensively in PCE, but in some situations it is

the best solution.

2.2.1.2 Extending PCE

The alternative provided by PCE-4 is to create a new class for the canvas. Creat-

ing a class is done using the normal PCE interface primitives new/2, send/[2-12] and

get/[3-13], but a Prolog de�ned preprocessor based on the Edinburgh Prolog primitive

term expansion/2. This is our solution based on classes.

9

The pce begin class/3 call creates class canvas as a subclass of (the prede�ned)

class picture. Next, it asserts (using asserta/1) a clause for term expansion/2 that will

convert the class declarations. The optional last argument is the summary documentation

of the class. The pce end class/0 call terminates the declaration by removing the clause

for term expansion/2.

The variable/4 declaration is expanded to attach a new instance variable for the

class. The arguments are the name, the type, the access rights and the optional summary

documentation. The :->/2 is expanded to de�ne a send method for the class. The �rst

argument is `self'. The remaining arguments are of the form `PrologVar:PceType'. The

body may start with a line '"...."::', which is recorded as the summary documentation

of the method. The remainder is plain Prolog code.

The method !initialise is called from the PCE virtual machine (VM) to initialise the

instance from the arguments provided with new/2. It should be there if the initialisation

should do something in addition to the initialisation of the super-class. When de�ned, the

!initialise method should perform the initialisation of the super class:

send(Self, send_super, initialise, ...)

In this example, the variable

!

modi�ed must be initialised to @off.

The !display method as de�ned below rede�nes the built-in method of class picture

by setting the modi�ed ag.

:- pce_begin_class(canvas, picture, "Drawing area").

variable(modified, bool, both, "Has diagram been modified").

initialise(C) :->

send(C, send_super, initialise),

send(C, modified, @off).

display(C, Gr:graphical, Pos:[point]) :->

"Display graphical and set modified"::

send(C, send_super, display, Gr, Pos),

send(C, modified, @on).

:- pce_end_class.

After this, we can use the class as if it were a prede�ned PCE class:

...

new(C, canvas),

send(C, display, box(30,30)),

...

User de�ned classes is one of the three possibilities to build an application in PCE. It does

not have the disadvantages of introducing `conceptual' kinds using Prolog predicates, nei-

ther the disadvantages of using object-level programming. Complete applications however

10

normally consist of a large number of objects with sometimes only slightly di�erent be-

haviour. Using classes for each of these categories makes it di�cult to avoid large amounts

of awkward classnames. For this reason, using Prolog predicates or object level program-

ming can be a good alternative for de�ning a class. It is adviced to use these techniques

only for local communication and use class-level programming for global communication

between components of the application.

Extending vs. creating classes

PCE/Prolog allows both for extending the behaviour of existing classes and de�ning new

ones. Extending classes implies rede�ning them, and should �rst of all be used to (tem-

porary) overcome ommisions in the PCE system itself. Extending behaviour of existing

classes may easily a�ect consistency of large applications, so be careful.

For one case, extending PCE classes may be considered. Suppose we have an applica-

tion that creates various subclasses of the various prede�ned subclasses of class graphical

(e.g. box, circle, line) and all these classes need to have some common method that can

be implemented at the level of the PCE class graphical. In this case it might be desirable

to implement the method there instead of at each subclass. If you decide to do so, it

is adviced to give the method a name that clearly indicates the application for which it

was introduced, so no conicts with other applications or future PCE extensions is to be

feared.

1

Creating new classes however does not a�ect the consistency of the system and provides

a clean way to extend PCE.

2.3 Class organisation and communication

2.3.1 Overall tool communication

The application as a whole is represented by an instance of class `draw', which is a subclass

of the PCE class frame. Class draw serves as an overall manager of the various parts of

the drawing tool. Class frame forms an ideal starting point to do this:

� Any graphical object (and almost anything in such a tool is a graphical object or

is closely related to one) can easily �nd the reference to the tool as a whole using

`Graphical frame'.

� Class frame can easily �nd all its parts using `Frame member'.

For this reason, the instance of class frame is the ideal part to support communication.

For example, feedback can be centralised by de�ning a method !feedback on the frame.

Now, any graphical object can give feedback by doing:

send(Myself?frame, feedback, 'I just did this').

1

An alternative (and in this case better) solution to this problem would be to introduce multiple

inheritance. Multiple inheritance however introduces various conceptual problems and in the current

implementation of PCE unresolvable technical ones.

11

2.3.2 Drawing area and shapes

Picture and graphical are a communication couple. The drawing area of PceDraw is

realised by class draw canvas which is a subclass of picture. The various shapes that can

be drawn are subclasses of closely related standard graphical classes (e.g. box, line). The

pair canvas and shape adds responsiveness to user-events, maintenance of changes, etc. to

the standard interaction between picture and graphical.

2.3.3 User Events (Shapes and gestures)

Shapes de�ne the `Shape!event' behaviour by forwarding the event to a reusable `gesture'

object. A `gesture' is an object that allows for the management of a sequence of button-

events, starting with a mouse-down and ending with the corresponding mouse-up. PCE

de�nes several standard gestures. The �le gesture.pl creates subclasses to implement the

speci�c user-interface needed by PceDraw.

12

Chapter 3

The Sources

The application is subdivided into a number of �les, each of which is a Prolog module �le

and de�nes a number of PCE classes that serve a similar role in the overall application.

We use the Prolog module system to avoid possible name-conicts with other packages for

predicates used to support the methods. Below is an overview of the �les.

� draw.pl

De�nes the toplevel predicates and the class `draw', of which a drawing tool is an

instance. Class draw is a subclass of the PCE class `frame'

� canvas.pl

De�nes class `draw canvas'; a subclass of class picture. It is the drawing area of the

editor.

� shapes.pl

De�nes the shapes that can be drawn on the canvas. These shapes are small exten-

sions to standard PCE classes. They add handles for connections and handling user

events.

� gesture.pl

De�nes subclasses of the PCE gesture classes. These gestures are linked to the

shapes to process user events.

� menu.pl

De�nes the menu at the right of the drawing area and the (prototype) icons displayed

on them.

� attribute.pl

De�nes the attribute editor that can be used to modify the attributes of graphical

objects.

� align.pl

De�nes the automatic alignment functionality. This �le is not included in the sources

as it adds little to the understanding of xpce.

Conventions

Each source �le is given in a section named \Source �le name". The actual code is preceded

by small line numbers at the left margin.

13

3.1 Source �le \draw.pl"

1 /* $Id: draw.pl,v 1.9 1993/05/06 10:12:58 jan Exp $

2 Part of XPCE

3 Designed and implemented by Anjo Anjewierden and Jan Wielemaker

4 E-mail: jan@swi.psy.uva.nl

5 Copyright (C) 1992 University of Amsterdam. All rights reserved.

6 */

7 :- module(draw,

8 [draw/0 % Start drawing tool

9 , draw/1 % Start editing file

10]).

3.1.1 Linking other �les

This module is the toplevel module of PceDraw. It loads the various other modules and

de�nes class `draw', of which the drawing tool is an instance.

PCE/Prolog modules that should run on SICStus Prolog must include the library pce,

which de�nes the basic interface predicates. The require/1 directive loads the requested

predicates from the (PCE-)library. None of these declarations are needed for SWI-Prolog

as SWI-Prolog will inherit the PCE system predicates from the module `user' and load

the other predicates using the autoloader.

11 :- use_module(library(pce)).

12 :- require([concat/3

13 , send_list/3

14]).

With this declaration we load the other Prolog modules of PceDraw.

15 :- use_module(

16 [gesture % Gestures

17 , shapes % Drawable shapes

18 , canvas % Drawing plain

19 , menu % Icon Menu

20]).

The additional �le declarations below are not always needed. For this reason they are

de�ned using pce autoload/2. This keeps the initial image small, reducing startup

time. Whenever an attempt is made to create an instance or subclass of a class that

is de�ned as an autoload class, PCE will activate the `unde�ned class' member of `@pce

 exception handlers'. Using the standard interface setup, this will cause Prolog to exam-

ine the autoload declarations and load the speci�ed �le.

The library �le �nd �le.pl de�nes class �nder, an instance of which can be used to

ask the user for a Unix �le. One instance can be used for �nding any �le that is needed

by PceDraw. For this reason we use the pce global/2 construct. Whenever @finder is

passed via one of the interface predicates and @finder does not exist, the database of

global declarations is searched.

14

21 :- pce_autoload(draw_attribute_editor, attribute).

22 :- pce_autoload(finder, library(find_file)).

23 :- pce_global(@finder, new(finder)).

3.1.2 Entry point

Toplevel goals:

� draw

Create a drawing tool and display it.

� draw(+File)

As draw/0, but immediately loads a �le.

One could choose not to de�ne these predicate and declare the class `draw' to be the

toplevel or public functionality. This actually might be a cleaner solution than the one

choosen here.

24 draw :-

25 new(Draw, draw),

26 send(Draw, open).

27 draw(File) :-

28 add_extension(File, '.pd', PdFile),

29 new(Draw, draw),

30 send(Draw, open),

31 get(Draw, canvas, Canvas),

32 (send(file(PdFile), exists)

33 -> send(Canvas, load, PdFile, @on)

34 ; send(Canvas, file, PdFile)

35).

36 add_extension(Base, Ext, Base) :-

37 concat(_, Ext, Base), !.

38 add_extension(Base, Ext, File) :-

39 concat(Base, Ext, File).

3.1.3 Class draw

Class `draw' de�nes and manages the entire tool. Its initialisation builds the entire tool

and the resulting instance provide means of communication between the various parts.

The call

40 :- pce_begin_class(draw, frame).

starts the de�nition of a new class `draw' that is a subclass of class frame. Classes should

always be a subclass of some existing class. If there is no particular PCE class to inherit

from, this should be class `object', the root of the PCE class hierarchy.

The term resource/4 is expanded by the PCE/Prolog class loader. A resource pro-

vides access to the X-window resource database. The PceDraw user may specify a value

in /.Xdefaults:

15

Pce.Draw.auto_align_mode: @off

41 resource(auto_align_mode, bool, '@on',

42 "Automatically align graphicals").

If the initialisation of an instance of this class di�ers from the initialisation of its super-

class, a method called `!initialise' must be de�ned. It's task is to initialise the new

instance. When PCE creates an instance (with new/2, @pce instance or otherwise), it

allocates memory for it, resets all slots to @nil and calls the !initialise method. The

arguments to this method may di�er from the initialisation arguments of the super class.

In this case, frame has three (optional) initialisation arguments, while class draw has none.

Somewhere in the initialise method, there should be a call

send(Self, send_super, initialise, ...)

To invoke the initialisation method of the superclass. The arguments should be valid

arguments for the initialisation method of this superclass. The normal schema is:

1. Check the arguments and compute defaults from them.

2. send(Self, send super, initialise, ...)

3. Do class speci�c initialisation.

In our case, the various windows that make up the drawing tool are created and attached

to the frame.

To avoid a giant clause, a call to the sub-predicate fill dialog/1 is made. It is a

di�cult decision whether or not this should have been realised using `send(Draw, �ll dialog,

D)' and the subsequent declaration of this method. In general, use send/[2-12] and

get/[3-13] for communication between classes, or communication within a class if type-

checking or type-conversion associated with PCE methods is useful.

For PCE-3 users, note the use of the term new/2 in the second and further sends to

create the windows inline and get the reference. This approach is preferred over a separate

new/2 and!append. It is shorter but -more important- it attaches the canvas immediately

to the frame, making the frame responsible for its destruction.

43 initialise(Draw) :->

44 send(Draw, send_super, initialise, 'PceDraw'),

45 send(Draw, done_message, message(Draw, quit)),

46 send(Draw, append, new(Canvas, draw_canvas)),

47 send(new(Menu, draw_menu), left, Canvas),

48 send(new(D, dialog), above, Menu),

49 fill_dialog(D),

50 fill_menu(Menu),

51 send(Menu, activate_select).

16

3.1.4 Command area (dialog)

Unlike the icon menu and the canvas, the dialog is just an instance of the PCE class `dialog'.

This approach is taken because the menus in the dialog can easily �nd the references to

the various parts of PceDraw they want to activate. It is cumbersome and unnecessary to

send the messages �rst to the dialog and from there to the appropriate part of the system.

In a sense, it would be cleaner to send the message to the overall drawing tool �rst

and from there to the appropriate part. This would provide all the functionality of the

tool menus with the tool as a whole. As a drawback, it implies the code to actually get

something done will be spread over three places instead of two:

� The menu

� class draw

� The part that takes care of the actual function.

First of all, a number of obtainers and messages that can be reused in the remainder of

the menu are created. This approach has two advantages over doing it `in-place':

� By giving it a name, it becomes clear which part of the system is referred to or what

function the message realises

� It exploits the reusability of messages and obtainers: only one such object is used

for all the menus.

Next, the various dialog items are attached to the dialog. Note again the use of the new/2

construct in send to get the references. By using `Dialog !append' the dialog items are

placed in a two-dimensional grid. They are given a position when the dialog is created

using the `Dialog !layout' method.

Finally, the (popup) menus of the menu bar are �lled. The initialisation arguments of

class menu item are:

� Value

Used to refer to the item. When the

!

message of the menu item is @default and

there is a message attached to the menu, this value is forwarded via the message as

@arg1.

� Message

This message is sent when the item is selected.

� Label

This is a name or image. When @default, a default label will be computed from

the value. See `menu item default label'.

� Condition

This message will be evaluated just before the menu is shown. When it succeeds

the item will be active, otherwise it will be inactive (greyed). The evaluation of all

condition messages in a menu should be fast for good interactive response.

52 fill_dialog(D) :-

53 new(Draw, D?frame),

54 new(Canvas, Draw?canvas),

17

55 new(Menu, Draw?menu),

56 new(Selection, Canvas?selection),

57 new(NonEmptySelection, not(message(Selection, empty))),

58 new(NonEmptyDrawing, not(message(Canvas?graphicals, empty))),

59 new(HasCurrentFile, Canvas?file \== @nil),

60 send(D, append, new(MB, menu_bar(actions))),

61 send(D, append, label(feedback, 'Welcome to PceDraw'), right),

62 send(MB, append, new(F, popup(file))),

63 send(MB, append, new(P, popup(proto))),

64 send(MB, append, new(E, popup(edit))),

65 send(MB, append, new(S, popup(settings))),

66 send_list(F, append,

67 [menu_item(about,

68 message(Draw, about))

69 , menu_item(help,

70 message(Draw, help),

71 @default, @on)

72 , menu_item(load,

73 message(Canvas, load_from))

74 , menu_item(import,

75 message(Canvas, import),

76 @default, @on,

77 NonEmptyDrawing)

78 , menu_item(save,

79 message(Canvas, save),

80 @default, @off,

81 and(NonEmptyDrawing,

82 Canvas?modified == @on,

83 HasCurrentFile))

84 , menu_item(save_as,

85 message(Canvas, save_as),

86 @default, @on,

87 NonEmptyDrawing)

88 , menu_item(postscript,

89 message(Canvas, postscript),

90 @default, @off,

91 HasCurrentFile)

92 , menu_item(postscript_as,

93 message(Canvas, postscript_as),

94 @default, @off,

95 NonEmptyDrawing)

96 , menu_item(print,

97 message(Canvas, print),

98 @default, @on,

99 NonEmptyDrawing)

100 , menu_item(quit,

101 message(Draw, quit),

102 @default, @off)

103]),

104 send_list(P, append,

18

105 [menu_item(create,

106 message(Menu, create_proto, Selection),

107 @default, @off,

108 NonEmptySelection)

109 , menu_item(delete,

110 message(Menu, delete),

111 @default, @on,

112 message(Menu, can_delete))

113 , menu_item(load,

114 message(Menu, load_from),

115 @default, @off)

116 , menu_item(save,

117 message(Menu, save),

118 @default, @off,

119 Menu?modified == @on)

120 , menu_item(save_as,

121 message(Menu, save_as),

122 @default, @on,

123 Menu?modified == @on)

124]),

125 send_list(E, append,

126 [menu_item(expose,

127 message(Canvas, expose_selection),

128 @default, @off,

129 NonEmptySelection)

130 , menu_item(hide,

131 message(Canvas, hide_selection),

132 @default, @on,

133 NonEmptySelection)

134 , menu_item(align,

135 message(Canvas, align_selection),

136 @default, @on,

137 Selection?size > 1)

138 , menu_item(edit_attributes,

139 message(Canvas, edit_selection),

140 @default, @on,

141 NonEmptySelection)

142 , menu_item(duplicate,

143 message(Canvas, duplicate_selection),

144 @default, @off,

145 NonEmptySelection)

146 , menu_item(cut,

147 message(Canvas, cut_selection),

148 @default, @on,

149 NonEmptySelection)

150 , menu_item(import_image,

151 message(Canvas, import_image),

152 @default, @on)

153 , menu_item(import_frame,

154 message(Canvas, import_frame),

155 @default, @on)

156 , menu_item(clear,

19

157 message(Canvas, clear, @on),

158 @default, @off,

159 NonEmptyDrawing)

160]),

161 send(S, multiple_selection, @on),

162 send(S, on_image, @mark_image),

163 send_list(S, append,

164 [menu_item(auto_align,

165 message(Canvas, auto_align_mode, @arg1))

166]),

167 (get(Draw, resource_value, auto_align_mode, @on)

168 -> send(S, selected, auto_align, @on),

169 send(Canvas, auto_align_mode, @on)

170 ; true

171).

3.1.5 Initial prototypes

Fill the menu of the drawing tool with the standard options. After initialising the menu,

its

!

modi�ed status is set to @off to indicate saving is not necessary. See the �le `menu.pl'

for details.

Class draw menu de�nes `draw menu !proto'. The �rst argument is the prototype,

the second the associated mode and the third the cursor that should be displayed in this

mode.

172 fill_menu(M) :-

173 send(M, proto, @nil, select, top_left_arrow),

174 send(M, proto, @nil, edit_text, xterm),

175 send(M, proto, draw_text(''), create_text, xterm),

176 send(M, proto, draw_box(0,0), create_resize, crosshair),

177 send(M, proto, draw_ellipse(0,0), create_resize, crosshair),

178 send(M, proto, draw_line(0,0,0,0), create_line, crosshair),

179 send(M, proto, new(draw_path), create_path, cross),

180 send(M, proto, link(link), connect, plus),

181 send(M, proto, link(unique), connect_create, plus),

182 send(M, modified, @off).

3.1.6 Finding parts

The methods below provide access to the various parts of the drawing tool. It makes it

easier to remember how to access the parts and allows for changing the classnames without

a�ecting too much code.

183 dialog(Draw, D) :<-

184 "Find the dialog of the tool"::

185 get(Draw, member, dialog, D).

186 canvas(Draw, C) :<-

187 "Find the drawing canvas"::

20

188 get(Draw, member, draw_canvas, C).

189 menu(Draw, C) :<-

190 "Find the icon menu"::

191 get(Draw, member, draw_menu, C).

3.1.7 Modes

PceDraw can operate in various modes. A mode de�nes what happens on a left-button-

down event (ms left down). The various recognisers for left-button events are only sen-

sative when the draw canvas is in the appropriate modes.

!mode and !proto pass messages from the menu to the appropriate part of PceDraw

(the canvas). As discussed above, it as ok for the dialog to send messages directly to

the parts. Why is it not ok to do this from the menu? The answer is that the menu is

de�ned in a di�erent module of the system. It could be reusable in a di�erent context (for

example in a prototype editor), where the overall tool wants to implement mode switches

di�erently. Note that through frame the menu has generic access to the tool it is part

of.

192 mode(Draw, Mode:name, Cursor:cursor) :->

193 "Switch the mode"::

194 send(Draw?canvas, mode, Mode, Cursor).

195 proto(Draw, Proto:'graphical|link*') :->

196 "Switch the current prototype"::

197 send(Draw?canvas, proto, Proto).

3.1.8 Feedback

The method !feedback as de�ned here provides a general mechanism for any part of

PceDraw to print a (short) feedback message:

send(MySelf?frame, feedback, string('%s: No such file', File))

NOTE: This mechanism should be exploited further in PCE itself by providing sensible

defaults for feedback handling.

198 feedback(Draw, Str:string) :->

199 "Print feedback message in dialog"::

200 send(Draw?dialog?feedback_member, selection, Str).

201 about(_Draw) :->

202 "Print `about' message"::

203 send(@display, inform, '%s\n\n%s\n%s\n%s\n',

204 'PceDraw version 1.1',

205 'By',

206 'Jan Wielemaker',

207 'E-mail: jan@swi.psy.uva.nl').

21

The!help method opens a view with the help-text. Currently, there are no provisions for

PCE to �nd the help-�le. Using the library directory/1 predicate should be considered

a temporary solution.

The code below is dubious. In a larger application with various possibilities for getting

help one should introduce a separate help system.

208 help(_Draw) :->

209 "Show window with help-text"::

210 (library_directory(Dir),

211 concat(Dir, '/draw/draw.hlp', HelpText),

212 new(File, file(HelpText)),

213 send(File, exists)

214 -> new(V, view('PceDraw: help')),

215 send(V, size, size(80, 40)),

216 new(D, dialog),

217 send(D, append, button(quit, message(V, free))),

218 send(D, below, V),

219 send(V, load, File),

220 (send(File, access, write)

221 -> send(V, editable, @on)

222 ; send(V, editable, @off)

223),

224 send(V, open)

225 ; send(@display, inform, 'Can''t find help file `draw.hlp''')

226).

3.1.9 Quit

Quit PceDraw. This is rather simplistic. The code should both check for modi�cations in

the prototype database and for the drawing. If one or both of them has changed a window

indicating what has been modi�ed should be displayed, allowing the user to save and/or

quit PceDraw.

227 quit(Draw) :->

228 "Leave draw"::

229 get(Draw, canvas, Canvas),

230 (get(Canvas, modified, @on)

231 -> new(D, dialog),

232 send(D, transient_for, Draw),

233 send(D, append, label(message, 'Drawing has changed')),

234 send(D, append, button('Save & Quit',

235 message(D, return, save_and_quit))),

236 send(D, append, button(quit,

237 message(D, return, quit))),

238 send(D, append, button(cancel,

239 message(D, return, cancel))),

240 get(D, confirm_centered, Rval),

241 send(D, destroy),

242 (Rval == save_and_quit

243 -> send(Canvas, save),

22

244 send(Draw, destroy)

245 ; Rval == quit

246 -> send(Draw, destroy)

247)

248 ; (send(@display, confirm, 'Quit PceDraw?')

249 -> send(Draw, destroy)

250 ; fail

251)

252).

253 :- pce_end_class.

23

3.2 Source �le \canvas.pl"

1 /* $Id: canvas.pl,v 1.12 1993/09/03 09:52:16 jan Exp $

2 Part of XPCE

3 Designed and implemented by Anjo Anjewierden and Jan Wielemaker

4 E-mail: jan@swi.psy.uva.nl

5 Copyright (C) 1992 University of Amsterdam. All rights reserved.

6 */

7 :- module(draw_canvas, []).

8 :- use_module(library(pce)).

9 :- use_module(align).

10 :- require([chain_list/2

11 , concat/3

12 , concat_atom/2

13 , ignore/1

14 , shell/1

15]).

Class `draw canvas' de�nes the actual drawing area. Representing a collection of graph-

icals, the closest PCE class is `picture'. In addition to pictures, class draw canvas takes

care of the current mode, the current prototype, the �le (for loading and saving the image)

and an editor for changing attributes of graphical objects.

For editing the drawing, two variables have been added: `mode' and `proto'. `Mode'

is an indication of the current mode. The various gestures de�ned in the �le `gesture' are

only active in prede�ned modes. They can access the current mode with:

@event?receiver?window?mode

For modes that create objects, the variable `proto' contains a prototype of the object to

be created. Instances of the prototype are created using `Object clone', except for links,

which are instantiated by creating a connection from them.

The variables

!

�le and modi�ed are used to implement !save and !load.

1

The attribute editor is a reference to an editor that allows the user to change the

attributes of the graphicals in the selection.

2

16 :- pce_begin_class(draw_canvas, picture).

17 resource(size, size, '500x500', 'Default size of drawing area').

18 variable(mode, name, get,

19 "Current mode of operation").

20 variable(proto, object*, both,

21 "Current create prototype (graphical/link)").

22 variable(file, file*, get,

1

Modi�ed is a di�cult issue. It should be set by all operations that change anything to the contents of

the diagram. Maybe it is better to implement a modi�ed variable at the level of window, or implement a

message that allows the programmer to keep track of actions on the picture.

2

Should we de�ne the type of the attribute editor to be `draw attribute editor*' or rather `object*' and

just rely the attribute editor has the appropriate methods to facilitate the communication?

24

23 "Current save/load file").

24 variable(modified, bool, get,

25 "Has the contents been modified?").

26 variable(auto_align_mode, bool, both,

27 "Autoalign graphicals after create/resize").

28 variable(attribute_editor, draw_attribute_editor*, both,

29 "Editor handling attributes").

3.2.1 Initialise

!initialise initialises the picture and custom slots that should not be @nil. It also attaches

an event recogniser to the picture. Note that there are two ways to attach an event

recogniser to a picture.

The �rst is to attach a recogniser using the `Object!recogniser' method. In this case,

the object is extended with an interceptor and the recogniser is attached to this interceptor.

Recognisers attached to an interceptor are activated by the `Graphical !event'.

The second is to de�ne a method!event. This method may either decide to decode the

events itself, or leave this to a recogniser. These approaches are used in the �le shapes.pl

to make shapes sensitive to user actions.

30 initialise(Canvas) :->

31 "Create a drawing canvas"::

32 send(Canvas, send_super, initialise, 'Canvas'),

33 send(Canvas, slot, modified, @off),

34 send(Canvas, auto_align_mode, @off),

35 send(Canvas, mode, select, @nil),

36 send(Canvas, recogniser, @draw_canvas_recogniser).

The recogniser itself is a reusable object (which implies other instances of draw canvas can

use the same instance of the recogniser). For this reason, it is declared using pce global/2.

The �rst time the recogniser reference is passed to PCE, the interface will trap an exception

and create the object using the declaration in this �le. This approach will delay the

creation of the reusable object until it is really necessary and avoids conditions in the code

(i.e. `if object does not exist then create it' just before it is used).

3

37 :- pce_global(@draw_canvas_recogniser,

38 new(handler_group(@draw_create_resize_gesture,

39 @draw_create_line_gesture,

40 @draw_create_path_gesture,

41 @draw_create_text_recogniser,

42 @draw_create_proto_recogniser,

43 @draw_warp_select_gesture,

3

I'm not sure whether or not it is better to a) Declare the global objects in gesture.pl and just refer to

them here or b) Just declare the classes there and create instances here.

Both approaches have their advantages. The �rst approach guarantees maximal reuse. Actually there is

only one instance of each gesture class and one may advocate it is better to use object-level programming

to create this sole instance. PCE should o�er

:- pce begin object(NewTerm). ... :- pce end object.

similar to de�ning classes.

25

44 click_gesture(right, '', single,

45 message(@event?receiver?frame?menu,

46 activate_select))))).

3.2.2 Unlink

The !unlink behaviour is called when an object is removed from the PCE object base,

either initiated through `Object!free', or through the garbage collector. `Object!unlink'

is responsible for unlinking the object from its environment. For example, when a window

is unlinked it should inform X-windows; when a graphical is unlinked, it should inform its

device. Removing an object entails the following steps:

1. Call !unlink

2. Reset all slots that have objects in them to @nil

3. Reclaim the memory

Like !initialise, !unlink should invoke the method of the super-class. Normally, it will

�rst do its own part of the job and then starts the !unlink of the superclass.

47 unlink(Canvas) :->

48 (get(Canvas, attribute_editor, Editor),

49 Editor \== @nil

50 -> send(Editor, quit)

51 ; true

52),

53 send(Canvas, send_super, unlink).

3.2.3 Modi�cations

54 modified(C) :->

55 send(C, slot, modified, @on).

3.2.4 Selection

Managing the selection. This is no di�erent than for standard picture, except that we

have to update the attribute-editor if it is attached.

56 selection(C, Sel:'graphical|chain*') :->

57 "Set the selection shape or chain"::

58 send(C, send_super, selection, Sel),

59 send(C, update_attribute_editor).

60 toggle_select(C, Shape:graphical) :->

61 "(Un)select a shape"::

62 send(Shape, toggle_selected),

63 send(C, update_attribute_editor).

26

3.2.5 Imports

Import a named X11 image (bitmap) �le into the drawing. This code implements a

simple modal dialog window that prompts for an image. The `text item !type' attribute

describes the (PCE) type of the object requested. After the user has entered a name and

type return or pressed the `ok' button, PCE will try to convert the typed value into an

PCE image object. See `image convert' for the conversion rules.

64 import_image(C) :->

65 "Import an image at location (0,0)"::

66 new(D, dialog('Import Image')),

67 send(D, append, new(TI, text_item(image, ''))),

68 send(TI, type, image),

69 send(D, append, button(ok, message(D, return, TI?selection))),

70 send(D, append, button(cancel, message(D, return, @nil))),

71 send(D, default_button, ok),

72 get(D, confirm_centered, Image),

73 send(D, destroy),

74 Image \== @nil,

75 send(C, display, draw_bitmap(Image)).

Import another PCE frame as a bitmap. The user may select a frame to be imported by

clicking on it. There are two ways to implement this. The �rst is to grab the mouse-focus,

wait for a left-click and then locate the frame on which the user clicked. The second

is to use PCE's `inspect-handlers'. If an event happens that satis�es one of the `display

 inspect handlers', PCE will locate the graphical on which the event occurred and execute

the message of the inspect-handler with @arg1 bound to the graphical on which the event

occurred. This mechanism is exploited by the `Inspector' and `Visual Hierarchy' tools of

the manual.

76 import_frame(C) :->

77 "Import image of a frame"::

78 get(C, display, Display),

79 new(D, dialog('Import Frame')),

80 send(D, append,

81 label(prompt, 'Please left-click inside PCE frame to import')),

82 send(D, append, button(cancel, message(D, return, @nil))),

83 send(Display, inspect_handler,

84 new(G, handler(ms_left_up, message(D, return, @arg1?frame)))),

85 get(D, confirm, Frame),

86 send(Display?inspect_handlers, delete, G),

87 send(D, destroy),

88 Frame \== @nil,

89 send(C, display, draw_bitmap(Frame?image)).

3.2.6 Edit

Selection-edit operations. Most of them are rather trivial. Note the use of `Chain!for all'

to perform operations on all members of the selection. This method is a lot faster then

transferring the selection to a Prolog list and than operating on it:

27

get(Canvas, selection, Selection),

chain_list(Selection, List),

forall(member(Gr, List), send(Gr, free)).

The `Chain !for all' operation �rst makes an array of objects in the chain, than invokes

the message consequtively on each member of the list. Before sending the message, it

validates the object still exists. This makes the method safe for cases were destroying

one object destroyes related objects that may be in the chain too. Connections are an

example: destroying a graphical destroys all its connections and therefore leaves `dangling'

references.

One could generalise from the code below by introducing a method !for selection:

message, but the advantages are very small.

90 edit(Canvas, Msg, Grs:'[graphical|chain]') :->

91 "Perform operation on graphicals or selection"::

92 default(Grs, Canvas?selection, G0),

93 (send(G0, instance_of, chain)

94 -> send(G0, for_all, Msg)

95 ; send(Msg, forward, G0)

96),

97 send(Canvas, modified).

98 expose_selection(Canvas, Grs:'[graphical|chain]') :->

99 "Expose selected graphicals"::

100 send(Canvas, edit, message(@arg1, expose), Grs).

101 hide_selection(Canvas, Grs:'[graphical|chain]') :->

102 "Hide selected graphicals"::

103 send(Canvas, edit, message(@arg1, hide), Grs).

104 cut_selection(Canvas, Grs:'[graphical|chain]') :->

105 "Erase all members of the selection"::

106 send(Canvas, edit, message(@arg1, free), Grs).

3.2.7 Alignment

107 align_with_selection(Canvas, Gr:graphical) :->

108 "Align graphical (with selection)"::

109 (get(Canvas, selection, G0),

110 send(G0, delete_all, Gr),

111 \+ send(G0, empty)

112 -> true

113 ; get(Canvas?graphicals, copy, G0),

114 send(G0, delete_all, Gr)

115),

116 get(G0, find_all, not(message(@arg1, instance_of, line)), G1),

117 chain_list(G1, L1),

118 align_graphical(Gr, L1).

119 align_selection(Canvas) :->

28

120 "Align all elements of the selection"::

121 send(Canvas, edit, message(Canvas, align_graphical, @arg1)).

122 align_graphical(Canvas, Gr:graphical) :->

123 "Align a single graphical"::

124 get(Canvas?graphicals, find_all,

125 not(message(@arg1, instance_of, line)), G0),

126 send(G0, delete_all, Gr),

127 chain_list(G0, L0),

128 auto_adjust(resize, Gr, L0),

129 align_graphical(Gr, L0).

130 auto_align(Canvas, Gr:graphical, How:{create,resize,move}) :->

131 "Align graphical if auto align mode is @on"::

132 (get(Canvas, auto_align_mode, @on)

133 -> ignore(auto_align(Canvas, Gr, How))

134 ; true

135).

136 auto_align(Canvas, Gr, How) :-

137 get(Canvas?graphicals, find_all,

138 not(message(@arg1, instance_of, line)), G0),

139 send(G0, delete_all, Gr),

140 chain_list(G0, L0),

141 auto_adjust(How, Gr, L0),

142 align_graphical(Gr, L0).

143 auto_adjust(How, Gr, L0) :-

144 (How == create ; How == resize),

145 \+ send(Gr, instance_of, text),

146 adjust_graphical(Gr, L0), !.

147 auto_adjust(_, _, _).

The method below duplicates the selection and displays the duplicate at an optionally

speci�ed o�set. There are various di�cult operations in this predicate. The `if-then-else'

illustrates how default arguments are handled inside a method.

Next, the selection, which is a chain with the selected shapes, is cloned. `Object

 clone' creates a recursive clone. Note that the selection as a whole is cloned rather

than each member of it seperately. This guarantees proper kloning of relations inside the

selection (such as connections).

4

Finally !done is sent to the clone of the selection chain. This indicates PCE that

Prolog is no longer interrested in the object and that, if there are no references to it, it

may be removed. Using `Object !done' is generally advocated over using !free after

Prolog has �nished with the result of a get operation. Consider the following cases:

get(Graphical, position, Pos),

...

send(Pos, free).

4

Connections to objects outside the selection are not handled properly. Kloning objects has to be based

on semantics attached to slot-relations rather than classes.

29

and

get(Graphical, area, Area),

...

send(Area, free).

In the �rst example, `Pos' is a point created by the method, but not referred to by

the `Graphical'. Using !free is correct. In the second case however the method area

returns the area attribute of `Graphical' and destroying this would make `Graphical' an

inconsistent object. Using !done, the point will be removed in the �rst example, but the

area will remain in the second.

148 duplicate_selection(Canvas, Offset:[point]) :->

149 "Duplicate the selection"::

150 default(Offset, point(10, 10), Off),

151 get(Canvas?selection, clone, Duplicate),

152 send(Duplicate, for_all,

153 block(message(Canvas, display, @arg1),

154 message(@arg1, relative_move, Off))),

155 clean_duplicates(Duplicate),

156 send(Canvas, selection, Duplicate),

157 send(Duplicate, done),

158 send(Canvas, modified).

The method `object clone' makes a recursive copy of an object. If an object with

connection is cloned the connections as well as the `other side' of the connections will

be cloned as well. This predicate removes all graphical objects that are related to the

duplicated object but not displayed.

159 clean_duplicates(Chain) :-

160 new(Done, hash_table),

161 send(Chain, for_some,

162 message(@prolog, clean_duplicate_connections, @arg1, Done)),

163 send(Done, free).

164 clean_duplicate_connections(Gr, Done) :-

165 get(Done, member, Gr, @on), !.

166 clean_duplicate_connections(Gr, _) :-

167 \+ get(Gr, window, _), !,

168 send(Gr, destroy).

169 clean_duplicate_connections(Gr, Done) :-

170 send(Done, append, Gr, @on),

171 get(Gr, connections, AllConnections),

172 send(AllConnections, for_all,

173 message(@prolog, clean_duplicate_connections,

174 ?(@arg1, opposite, Gr), Done)).

Start the attribute editor on the current selection. The �rst time, we need to create the

editor. If the user hits `quit' on the button of the editor, the editor is just removed from

the display using `Frame !show: @off' and this function can make it visible again using

30

!show: @on. This approach has several advantages. First of all, it is a lot faster and

second, the attribute editor will be at the same location on the display as were the user

left it last time.

See also !unlink in this class and 'draw attribute editor !quit'.

175 edit_selection(Canvas) :->

176 "Start attribute editor on selection"::

177 get(Canvas, attribute_editor, Editor),

178 (Editor == @nil

179 -> send(Canvas, slot, attribute_editor,

180 draw_attribute_editor(Canvas)),

181 send(Canvas?attribute_editor, open)

182 ; send(Canvas?attribute_editor, show, @on),

183 send(Canvas?attribute_editor, expose)

184),

185 send(Canvas?attribute_editor, client, Canvas?selection).

Update the setting of the attribute editor because either the selection has changed, or the

attributes of members of the selection has changed.

5

186 update_attribute_editor(Canvas) :->

187 "Update values in attribute editor"::

188 get(Canvas, attribute_editor, Editor),

189 (Editor \== @nil

190 -> send(Editor, client, Canvas?selection)

191 ; true

192).

193 clear(Canvas, Confirm:[bool]) :->

194 "Clear and reset

!

�le attribute"::

195 (Confirm == @on,

196 \+ send(Canvas?graphicals, empty)

197 -> send(@display, confirm, 'Clear drawing?')

198 ; true

199),

200 send(Canvas, send_super, clear),

201 send(Canvas, file, @nil),

202 send(Canvas, slot, modified, @off),

203 send(Canvas, update_attribute_editor).

3.2.8 Load/save

Saving and loading is currently performed by saving the PCE objects using PCE's bi-

nary saving algorithm. This approach has several advantages and disadvantages. The

advantages:

� Using `Object !save in �le', applications whose database consists of a collection of

PCE objects can easily save their data.

5

The move and resize gestures should invoke this behaviour too.

31

� The PCE built-in loading and saving is fast.

The disadvantages

� Binary format. Currently no provisions for byte-order di�erences.

� It is di�cult to control what exactly will be stored on �le. See also the discussion

on kloning with !duplicate.

� Signi�cant changes to the representation of PCE-classes make reloading impossible.

This is notably a problem for loading and storing graphical information.

An alternative is to write an application-speci�c save/load that is more robust against

changes to PCE, but may be slow. This kind of saved version can be used to convert to

later versions of PCE.

!save as requests a �lename and then invokes `Object !save'. The �lename is re-

quested via @finder, an instance of the user-de�ned class `�nder', de�ned in the PCE

library �le `�nd �le.pl'. Linking the library is declared in the �le draw.pl.

This addresses the general case of asking for information using dialog-boxes. In earlier

PCE applications it was normal to build a dialog-box, display it, read the information and

destroy it again.

For the �le-�nder, the reusable object @finder is created using pce global/2 con-

struct. Once created, @finder is mapped on and removed-from the display using `Frame

!show: @on/@off'. This approach is fast and allow us to remember status (such as the

selected directory) from the last time the �nder was used.

204 save_as(Canvas) :->

205 "Save in user-speci�ed �le"::

206 get(@finder, file, @off, '.pd', File),

207 send(Canvas, save, File).

Actual saving to �le. The toplevel-object saved is a sheet. This way we can easily add

new attributes without a�ecting compatibility. Future versions will probably also save the

name of the �le on which the prototypes were stored, so we can reload the corresponding

prototypes.

208 save(Canvas, File:[file]) :->

209 "Save canvas in named �le"::

210 (File == @default

211 -> get(Canvas, file, SaveFile),

212 (SaveFile == @nil

213 -> send(@display, inform, 'No current file'),

214 fail

215 ; true

216)

217 ; send(Canvas, file, File),

218 SaveFile = File

219),

220 send(SaveFile, backup),

221 new(Sheet, sheet(attribute(graphicals, Canvas?graphicals))),

222 send(Sheet, save_in_file, SaveFile),

32

223 send(Canvas?frame, feedback,

224 string('Saved %s', SaveFile?base_name)),

225 send(Sheet, free).

226 load_from(Canvas) :->

227 "Load from user-speci�ed �le"::

228 get(@finder, file, @on, '.pd', File),

229 send(Canvas, load, File, @on).

230 import(Canvas) :->

231 "Add contents of user-requested �le"::

232 get(@finder, file, @on, '.pd', File),

233 send(Canvas, load, File, @off).

Load speci�ed �le and set the �le attribute. The PCE object is loaded from the �le using

the `File object: method.

6

234 load(Canvas, File:file, Clear:[bool]) :->

235 "Load from named �le and [clear]"::

236 (Clear == @on

237 -> send(Canvas, clear, @on)

238 ; true

239),

240 get(File, object, Sheet),

241 send(Sheet?graphicals, for_all,

242 block(message(Canvas, display, @arg1),

243 message(@arg1, selected, @off))),

244 send(Canvas, file, File),

245 send(Canvas?frame, feedback, string('Loaded %s', File?base_name)),

246 send(Sheet, done).

247 file(Canvas, File:file*) :->

248 "Set �le attribute"::

249 send(Canvas, slot, file, File),

250 (File \== @nil

251 -> send(Canvas?frame, label,

252 string('PceDraw: %s', File?name),

253 string('PceDraw: %s', File?base_name))

254 ; send(Canvas?frame, label, 'PceDraw')

255).

3.2.9 Postscript

Create a PostScript description of the contents of the picture.

7

6

Currently PCE provides no way for the programmer to specify what should happen on �le errors. This

will be �xed.

7

This should ask for options such as landscape and scaling factor, which can be applied to the Graphical

 postscript method.

33

256 postscript(Canvas) :->

257 "Write PostScript to default �le"::

258 get(Canvas, default_psfile, File),

259 send(Canvas, generate_postscript, File).

260 postscript_as(Canvas) :->

261 "Write PostScript to �le"::

262 get(Canvas, default_psfile, DefFile),

263 get(@finder, file, @off, '.ps', @default, DefFile, FileName),

264 send(Canvas, generate_postscript, FileName).

265 generate_postscript(Canvas, PsFile:file) :->

266 "Write PostScript to named �le"::

267 send(PsFile, open, write),

268 send(PsFile, append, Canvas?postscript),

269 send(PsFile, close),

270 send(Canvas?frame, feedback,

271 string('Written PostScript to `%s''', PsFile?base_name)).

272 default_psfile(Canvas, DefName) :<-

273 "Default name for PostScript �le"::

274 (get(Canvas, file, File),

275 File \== @nil,

276 get(File, name, Name),

277 concat(Base, '.pd', Name)

278 -> concat(Base, '.ps', DefName)

279 ; DefName = 'scratch.ps'

280).

Print the image to the default printer. Also this method should be extended by resquesting

additional parameters from the user.

281 print(Canvas) :->

282 "Send to default printer"::

283 default_printer(Printer),

284 temp_file(File),

285 new(PsFile, file(File)),

286 send(PsFile, open, write),

287 send(PsFile, append, Canvas?postscript),

288 send(PsFile, append, 'showpage\n'),

289 send(PsFile, close),

290 concat_atom(['lpr -P', Printer, ' ', File], Cmd),

291 shell(Cmd),

292 send(PsFile, remove),

293 send(PsFile, done),

294 send(Canvas?frame, feedback,

295 string('Sent to printer `%s''', Printer)).

296 default_printer(Printer) :-

297 get(@pce, environment_variable, 'PRINTER', Printer), !.

298 default_printer(postscript).

299 temp_file(Name) :-

34

300 get(@pce, pid, Pid),

301 concat('/tmp/xpce_', Pid, Name).

3.2.10 Modes

Switch the mode of the editor. The mode determines which gestures are active (see

`gesture.pl') and therefore what happens on some event. For each mode, a cursor is

de�ned to indicate the mode to the user.

302 mode(Canvas, Mode:name, Cursor:cursor*) :->

303 "Set the mode of the canvas"::

304 send(Canvas, cursor, Cursor),

305 send(Canvas, slot, mode, Mode),

306 send(Canvas, keyboard_focus, @nil),

307 send(Canvas, selection, @nil).

308 :- pce_end_class.

35

3.3 Source �le \shapes.pl"

1 /* $Id: shapes.pl,v 1.8 1993/09/03 09:52:19 jan Exp $

2 Part of XPCE

3 Designed and implemented by Anjo Anjewierden and Jan Wielemaker

4 E-mail: jan@swi.psy.uva.nl

5 Copyright (C) 1992 University of Amsterdam. All rights reserved.

6 */

7 :- module(draw_shapes, []).

8 :- use_module(library(pce)).

9 :- require([memberchk/2

10]).

This module de�nes the various shapes that can be used to construct the diagram. Most

of the shapes are very close the PCE's drawing primitives. Two things have to be added

for each of them: handles for connecting lines (connections) and event-handling.

Both things can be added both at the class and at the instance level. I decided to add

them at the class level. As there are normally multiple instances of the classe, this approach

reduces memory cost. A more important issue is kloning and saving. These operations

work recursively and therefore would clone and save the object-level extensions. For saving,

this has two disadvantages. The saved �les would get bigger and, more important, the

gestures -de�ning the UI of the tool- would be saved too. This leads to a bad separation

of UI and the actual data manipulated.

3.3.1 Common

The various shapes are subclasses of corresponding PCE graphicals. Each of them has to

be expanded with !geometry and !attribute. We de�ne predicates to implement these

methods and than just refer to these predicates.

11 geometry(Gr, X, Y, W, H) :-

12 send(Gr, send_super, geometry, X, Y, W, H),

13 modified(Gr).

14 attribute(Gr, Att, Val) :-

15 send(Gr, has_attribute, Att),

16 send(Gr, Att, Val),

17 modified(Gr).

18 modified(Gr) :-

19 get(Gr, window, Window), Window \== @nil,

20 send(Window, modified),

21 get(Gr, selected, @on),

22 send(Window, update_attribute_editor), !.

23 modified(_).

36

3.3.2 Box

Box is the most prototypical example of a graphical. Boxes in PceDraw have handles for

connections in the middle of each side. Event handling is realised by the reusable object

@draw resizable shape recogniser. Note that the reference to the box need not be

provided. !event is invoked from `Event !post' and the receiver slot of the event is a

reference to the box.

Note that draw box is a subclass of box rather than an extension of class box. Ex-

tending class box might conict with the consistency of PCE itself or other applications

running in the same PCE process (never assume you are alone in the world).

The handle/4 construct attaches a handle with speci�ed

!

kind and

!

name at the

speci�ed position. The handle is attached to the class (see `Class !handle') rather than

to the instances (see `Graphical !handle').

24 :- pce_begin_class(draw_box, box).

25 handle(w/2, 0, link, north).

26 handle(w/2, h, link, south).

27 handle(0, h/2, link, west).

28 handle(w, h/2, link, east).

29 event(_Box, Ev:event) :->

30 send(@draw_resizable_shape_recogniser, event, Ev).

31 geometry(B, X:[int], Y:[int], W:[int], H:[int]) :->

32 "Forward change to device"::

33 geometry(B, X, Y, W, H).

The !has attribute method tests whether the speci�ed attribute of the shape can be set.

This is a bit of a hack. A better solution would have been to test whether the graphical

has the speci�ed method. Unfortunately att graphicals have method

!

pen, but for some

of them, changing the value has not e�ect. The same applies for some other attributes.

This should be changed in PCE.

34 has_attribute(_B, Att:name) :->

35 "Test if object has attribute"::

36 memberchk(Att, [pen, texture, colour, fill_pattern, radius

37 , x, y, width, height]).

38 attribute(B, Att:name, Val:any) :->

39 attribute(B, Att, Val).

40 attribute(B, Att:name, Val) :<-

41 get(B, Att, Val).

42 :- pce_end_class.

3.3.3 Ellipse

43 :- pce_begin_class(draw_ellipse, ellipse).

44 handle(w/2, 0, link, north).

45 handle(w/2, h, link, south).

37

46 handle(0, h/2, link, west).

47 handle(w, h/2, link, east).

48 event(_Ellipse, Ev:event) :->

49 send(@draw_resizable_shape_recogniser, event, Ev).

50 geometry(E, X:[int], Y:[int], W:[int], H:[int]) :->

51 "Forward change to device"::

52 geometry(E, X, Y, W, H).

53 has_attribute(_E, Att:name) :->

54 "Test if object has attribute"::

55 memberchk(Att, [pen, texture, colour, fill_pattern

56 , x, y, width, height]).

57 attribute(E, Att:name, Val:any) :->

58 attribute(E, Att, Val).

59 attribute(E, Att:name, Val) :<-

60 get(E, Att, Val).

61 :- pce_end_class.

3.3.4 Text

62 :- pce_begin_class(draw_text, text).

63 handle(w/2, 0, link, north).

64 handle(w/2, h, link, south).

65 handle(0, h/2, link, west).

66 handle(w, h/2, link, east).

67 initialise(T, String:string, Format:[name], Font:[font]) :->

68 default(Format, center, Fmt),

69 default(Font, font(helvetica, roman, 14), Fnt),

70 send(T, send_super, initialise, String, Fmt, Fnt).

This method illustrates another way to de�ne event-handling at the class level: just analyse

the type of the event and perform the necessary action. For complex event-sequences

gestures are to be preferred as they take care of many of the di�culties such as managing

the focus, cursor and state-variables needed to parse the event sequence. For simple events

all this is not necessary, so we might just as well parse them within the !event method.

8 9

71 event(Text, Ev:event) :->

72 (get(Text, show_caret, @on),

73 get(Ev, id, Id),

74 event(Id, Text)

75 -> true

76 ; send(Ev, is_a, keyboard),

8

Events types will be changed shortly. Having to refer to ESC as `27' is not the right way to program.

I'm not yet sure on the details.

9

PCE will probably provided higher-level primitives such as a special subclass of recogniser to deal with

most of the details of this method.

38

77 get(Text, show_caret, @on)

78 -> send(Text, typed, Ev?id),

79 modified(Text)

80 ; send(Ev, is_a, obtain_keyboard_focus)

81 -> send(Text, show_caret, @on)

82 ; send(Ev, is_a, release_keyboard_focus)

83 -> (get(Text?string, size, 0),

84 send(Text?device, instance_of, draw_canvas) % HACK

85 -> send(Text, free)

86 ; send(Text, show_caret, @off)

87)

88 ; send(@draw_text_recogniser, event, Ev)

89).

90 event(27, Text) :- % ESC

91 send(Text?window, keyboard_focus, @nil).

92 event(9, Text) :- % TAB

93 send(Text?device, advance, Text).

Indicate to the device that this graphical is willing to accept the keyboard focus. It is

interpreted by the `Device!advance' method to set the keyboard focus to the next object

that wants to accept keystrokes.

10

94 '_wants_keyboard_focus'(_T) :->

95 "Indicate device I'm sensitive for typing"::

96 true.

97 geometry(T, X:[int], Y:[int], W:[int], H:[int]) :->

98 "Forward change to device"::

99 geometry(T, X, Y, W, H).

100 has_attribute(_T, Att:name) :->

101 "Test if object has attribute"::

102 memberchk(Att, [font, colour, transparent, x, y, width, height]).

103 attribute(T, Att:name, Val:any) :->

104 attribute(T, Att, Val).

105 attribute(T, Att:name, Val) :<-

106 get(T, Att, Val).

107 :- pce_end_class.

3.3.5 Line

108 :- pce_begin_class(draw_line, line).

109 handle(w/2, h/2, link, center).

110 handle(0, 0, link, start).

111 handle(w, h, link, end).

112 event(_L, Ev:event) :->

113 send(@draw_line_recogniser, event, Ev).

10

This mechanism needs some redesign and documentation.

39

114 geometry(L, X:[int], Y:[int], W:[int], H:[int]) :->

115 "Forward change to device"::

116 geometry(L, X, Y, W, H).

117 has_attribute(_L, Att:name) :->

118 "Test if object has attribute"::

119 memberchk(Att, [pen, texture, arrows, colour, x, y, width, height]).

120 attribute(L, Att:name, Val:any) :->

121 attribute(L, Att, Val).

122 attribute(L, Att:name, Val) :<-

123 get(L, Att, Val).

124 :- pce_end_class.

3.3.6 Path

125 :- pce_begin_class(draw_path, path).

126 event(_L, Ev:event) :->

127 send(@draw_path_recogniser, event, Ev).

128 geometry(L, X:[int], Y:[int], W:[int], H:[int]) :->

129 "Forward change to device"::

130 geometry(L, X, Y, W, H).

131 has_attribute(_L, Att:name) :->

132 "Test if object has attribute"::

133 memberchk(Att,

134 [pen, texture, colour, fill_pattern, arrows

135 , closed, interpolation

136 , x, y, width, height

137]).

138 attribute(L, Att:name, Val:any) :->

139 attribute(L, Att, Val).

140 attribute(L, Att:name, Val) :<-

141 get(L, Att, Val).

142 interpolation(L, N:int) :->

143 (N == 0

144 -> send(L, kind, poly)

145 ; send(L, intervals, N),

146 send(L, kind, smooth)

147).

148 interpolation(L, N:int) :<-

149 (get(L, kind, poly)

150 -> N = 0

151 ; get(L, intervals, N)

152).

153 :- pce_end_class.

40

3.3.7 Connections

A connection is a line between two handles on two di�erent graphical objects. See clas

handle, graphical and connection for details.

154 :- pce_begin_class(draw_connection, connection).

155 handle(w/2, h/2, link, center).

156 event(_C, Ev:event) :->

157 send(@draw_connection_recogniser, event, Ev).

158 has_attribute(_C, Att:name) :->

159 "Test if object has attribute"::

160 memberchk(Att, [pen, texture, arrows, colour, x, y, width, height]).

161 attribute(C, Att:name, Val:any) :->

162 attribute(C, Att, Val).

163 attribute(C, Att:name, Val) :<-

164 get(C, Att, Val).

165 :- pce_end_class.

3.3.8 Bitmap

Bitmaps are used to import arbitrary images into a drawing.

166 :- pce_begin_class(draw_bitmap, bitmap).

167 handle(w/2, 0, link, north).

168 handle(w/2, h, link, south).

169 handle(0, h/2, link, west).

170 handle(w, h/2, link, east).

171 event(_B, Ev:event) :->

172 send(@draw_bitmap_recogniser, event, Ev).

173 has_attribute(_C, Att:name) :->

174 "Test if object has attribute"::

175 memberchk(Att, [colour, x, y]).

176 attribute(C, Att:name, Val:any) :->

177 attribute(C, Att, Val).

178 attribute(C, Att:name, Val) :<-

179 get(C, Att, Val).

180 :- pce_end_class.

3.3.9 Compounds

Compounds are used to realise (user-de�ned) prototypes that consist of more than one

shape. Compound is a subclass of the PCE class `device', that manages a collection of

graphicals. In addition to devices, compounds de�ne distribution of keyboard events to

one of the text objects inside it and resizing the device.

41

181 :- pce_begin_class(draw_compound, device).

182 handle(w/2, 0, link, north).

183 handle(w/2, h, link, south).

184 handle(0, h/2, link, west).

185 handle(w, h/2, link, east).

Resizing compounds. PCE's primitives do not provide for that. However, any attempt

to change to the area of the graphical via `Graphical !set', `Graphical !x', `Graphical

!area', etc. will invoke `Graphical !geometry' to do the actual moving/resizing.

By default, devices will move themselve, but not resize their contents. In the method

below, we �rst resize the contents of the device in a way very similar to resizing the selection

as described in the �le `gesture.pl' and than invoke the super-behaviour to realise the move.

Never try to do the move yourself: the superclass might do (and in the case of device does)

additional things to changing the coordinates.

186 geometry(C, X:[int], Y:[int], W:[int], H:[int]) :->

187 "Resize compound graphical"::

188 resize_factor(W, C, width, Xfactor),

189 resize_factor(H, C, height, Yfactor),

190 ((Xfactor \== 1 ; Yfactor \== 1)

191 -> get(C?area, position, Origin),

192 send(Origin, minus, C?position),

193 send(C?graphicals, for_all,

194 message(@arg1, resize, Xfactor, Yfactor, Origin)),

195 send(Origin, done)

196 ; true

197),

198 geometry(C, X, Y, W, H).

199 resize_factor(@default, _, _, 1) :- !.

200 resize_factor(W1, C, S, F) :-

201 get(C, S, W0),

202 F is W1 / W0.

The method below sets the string of all text objects. Used by the icon manager (menu.pl)

and the create gesture (gesture.pl) to set the strings to `T', resp " (nothing).

203 string(C, Str:string) :->

204 "Set string of all texts"::

205 send(C?graphicals, for_all,

206 if(message(@arg1, has_send_method, string),

207 message(@arg1, string, Str))).

208 event(_C, Ev:event) :->

209 send(@draw_compound_recogniser, event, Ev).

The method below is called from the compound recogniser on a ms left down if the editor

is in text edit mode. If the down is in the area of a text, the caret is positioned as close

as possible to the location of the down. Otherwise it is placed on the �rst text object of

the compound.

42

First all text objects are found. Next, it tries to �nd the �rst text that overlaps with

the position of the down-event. If this succeeds, the caret is placed as close as possible to

the down location. Otherwise the caret is located at the end of the �rst text object of the

compound.

210 start_text(C, Ev:[event]) :->

211 "Enter typing mode"::

212 get(C?graphicals, find_all,

213 message(@arg1, instance_of, text), Texts),

214 (Ev \== @default,

215 get(Texts, find, message(Ev, inside, @arg1), Pointed)

216 -> send(Pointed, caret, ?(Pointed, pointed,

217 ?(Ev, position, Pointed))),

218 send(C?window, keyboard_focus, Pointed)

219 ; get(Texts, head, First)

220 -> send(First, caret, @default),

221 send(C?window, keyboard_focus, First)

222),

223 send(Texts, done).

The code below illustrates another reason for not communicating the attribute setting

using !x, !pen, etc. For a compound, the x, y, width and height attributes should hold

for the compound as a whole, while the other attributes should only hold for the parts.

224 geometry_selector(x).

225 geometry_selector(y).

226 geometry_selector(width).

227 geometry_selector(height).

228 has_attribute(C, Att:name) :->

229 "Test if object has attribute"::

230 (geometry_selector(Att)

231 -> true

232 ; get(C?graphicals, find, message(@arg1, has_attribute, Att), _)

233).

234 attribute(C, Att:name, Val:any) :->

235 (geometry_selector(Att)

236 -> send(C, Att, Val)

237 ; send(C?graphicals, for_some,

238 message(@arg1, attribute, Att, Val))

239).

240 attribute(C, Att:name, Val) :<-

241 (geometry_selector(Att)

242 -> get(C, Att, Val)

243 ; get(C?graphicals, find, message(@arg1, has_attribute, Att), Shape),

244 get(Shape, Att, Val)

245).

246 :- pce_end_class.

43

3.4 Source �le \gesture.pl"

1 /* $Id: gesture.pl,v 1.16 1993/09/29 09:28:38 jan Exp $

2 Part of XPCE

3 Designed and implemented by Anjo Anjewierden and Jan Wielemaker

4 E-mail: jan@swi.psy.uva.nl

5 Copyright (C) 1992 University of Amsterdam. All rights reserved.

6 */

7 :- module(draw_gesture, []).

8 :- use_module(library(pce)).

9 :- require([between/3

10 , concat/3

11 , send_list/3

12]).

This module de�nes event handling for the shapes. Event handling for dialog items is

prede�ned because the UI of dialog items is standardised. Event handling for general

purpose graphicals can be speci�ed by de�ning the method `Graphical !event'.

The default behaviour of !event (de�ned at the level of class graphical) is to look up

the `recognisers' slot of the attached interceptor (see `Object!recogniser') and test if any

of the attached interceptor is prepared to accept the event.

This implies there are three ways to de�ne event parsing for graphical objects:

1. Attach a recogniser the object.

2. Write an !event method that parses the events.

3. Write an !event method that forwards the event to recognisers.

For PceDraw we chose the latter approach for shapes. See also the �le canvas.pl. Provided

the recognisers do not directly refer to the object for which they handle events as in

send(B, recogniser, click_gesture(left, '', single,

message(B, inverted, @on)))

but, refer indirectly as in

send(B, recogniser, click_gesture(left, '', single,

message(@receiver, inverted,

@on)))

recognisers can be attached to any number of graphical objects. This �le de�nes generic

recognisers that are used by `Shape !event'.

3.4.1 Recogniser objects

Below are the declarations of the various recognisers. Note that using pce global/2, the

actual creation of the recogniser is delayed to the �rst time an event occurs on an object

that uses a speci�c recogniser.

44

13 /* Create shapes */

14 :- pce_global(@draw_create_resize_gesture,

15 new(draw_create_resize_gesture)).

16 :- pce_global(@draw_create_line_gesture,

17 new(draw_create_line_gesture)).

18 :- pce_global(@draw_create_path_gesture,

19 new(draw_create_path_gesture)).

20 :- pce_global(@draw_connect_gesture,

21 new(handler_group(new(draw_connect_gesture),

22 new(draw_connect_create_gesture)))).

23 /* Select shapes */

24 :- pce_global(@draw_shape_select_recogniser,

25 make_draw_shape_select_recogniser).

26 :- pce_global(@draw_warp_select_gesture,

27 new(draw_warp_select_gesture)).

28 /* Move/Resize shapes */

29 :- pce_global(@draw_move_outline_gesture,

30 new(handler_group(new(draw_move_selection_gesture),

31 new(draw_move_gesture)))).

32 :- pce_global(@draw_resize_gesture,

33 new(handler_group(new(draw_resize_selection_gesture),

34 new(draw_resize_gesture)))).

35 /* Combined shape recognisers */

36 :- pce_global(@draw_resizable_shape_recogniser,

37 new(handler_group(@draw_shape_select_recogniser,

38 @draw_resize_gesture,

39 @draw_move_outline_gesture,

40 @draw_connect_gesture,

41 @draw_shape_popup_gesture))).

42 :- pce_global(@draw_text_recogniser,

43 new(handler_group(@draw_shape_select_recogniser,

44 @draw_edit_text_recogniser,

45 new(draw_resize_selection_gesture),

46 @draw_move_outline_gesture,

47 @draw_connect_gesture,

48 @draw_shape_popup_gesture))).

49 :- pce_global(@draw_compound_recogniser,

50 new(handler_group(@draw_resizable_shape_recogniser,

51 @draw_compound_draw_text_recogniser))).

52 :- pce_global(@draw_connection_recogniser,

53 new(handler_group(@draw_shape_select_recogniser,

54 @draw_connect_gesture,

55 @draw_shape_popup_gesture))).

56 :- pce_global(@draw_bitmap_recogniser,

57 new(handler_group(@draw_shape_select_recogniser,

58 @draw_move_outline_gesture,

59 @draw_connect_gesture,

60 @draw_shape_popup_gesture))).

61 :- pce_global(@draw_line_recogniser,

45

62 new(handler_group(@draw_shape_select_recogniser,

63 @draw_connect_gesture,

64 @draw_shape_popup_gesture,

65 new(draw_change_line_gesture),

66 new(draw_move_selection_gesture),

67 new(move_gesture)))).

68 :- pce_global(@draw_path_recogniser,

69 new(handler_group(@draw_shape_select_recogniser,

70 @draw_shape_popup_gesture,

71 new(draw_modify_path_gesture),

72 @draw_edit_path_gesture,

73 @draw_resize_gesture,

74 @draw_move_outline_gesture,

75 new(move_gesture)))).

3.4.2 Select

When in select mode, left-click on an object makes it the selection, shift-left-click adds

or deletes it to/from the selection and left-dragging indicates an area in which all objects

should be selected.

Clicking on an object is to be de�ned at the level of the object itself, where the drag

version is to be de�ned at the level of the canvas. This is not very elegant as it implies we

have to create two recognisers; one for the shapes and one for the canvas. The alternative

would be one recogniser at the level of the canvas and �nd the object below the mouse on

a click. It is di�cult to say which of the two approaches is better.

The recogniser for shapes is de�ned below. It consists of a handler group with two

click gestures. This implementation is far simpler than de�ning a new class. Note the

de�nition of the obtainers before de�ning the gestures themselves. This method employs

reusability of object and is easier to read.

76 make_draw_shape_select_recogniser(G) :-

77 new(Shape, @event?receiver),

78 new(Canvas, Shape?window),

79 new(SelectMode, Canvas?mode == select),

80 new(G, handler_group(click_gesture(left, '', single,

81 message(Canvas, selection,

82 Shape),

83 SelectMode),

84 click_gesture(left, s, single,

85 message(Canvas, toggle_select,

86 Shape),

87 SelectMode))).

The `warp gesture' allows the user to indicate an area by dragging a button and then

selects all objects inside the indicated area. It is a rather typical example of a gesture

de�nition. The resource/3 declarations de�ne the X-resources that apply: the button

that activates the gesture, the modi�ers required (shift, control, meta) and the cursor

that indicates the gesture is active. These resource values are handled by the super-class

gesture.

46

The variable `outline' keeps track of the box that is used to indicate the area. It can

be stored here, as only one gesture can be active at a time.

88 :- pce_begin_class(draw_warp_select_gesture, gesture).

89 resource(button, button_name, left).

90 resource(modifier, modifier, '').

91 resource(cursor, cursor, hand2).

92 variable(outline, box, get,

93 "Outline to `warp' objects").

94 initialise(G, B:[button_name], M:[modifier]) :->

95 send(G, send_super, initialise, B, M),

96 send(G, slot, outline, new(Box, box(0,0))),

97 send(Box, texture, dotted).

The verify method is called to validate it is ok to start the gesture. In this context, this

implies the canvas is in select mode and there are actually objects displayed. It is called

after a button-down of the appropriate button with the appropriate modi�er is detected.

98 verify(_G, Ev:event) :->

99 get(Ev, receiver, Canvas),

100 get(Canvas, mode, select),

101 \+ send(Canvas?graphicals, empty).

After `Gesture !verify' succeeds `Gesture !initiate' is called to start the gesture. It

resizes the outline to size(0,0) using the `Graphical !set' (which avoids creating a size

object) and than displays it at the mouse-position.

102 initiate(G, Ev:event) :->

103 get(Ev, receiver, Canvas),

104 send(G?outline, set, @default, @default, 0, 0),

105 send(Canvas, display, G?outline, Ev?position).

On each drag-event, this method is called. It just resizes the outline.

106 drag(G, Ev:event) :->

107 send(G?outline, corner, Ev?position).

On the corresponding up-event, this method is called. It removes the outline from the

device and sends `draw canvas !selection' to the canvas with a chain of all objects inside

the area.

108 terminate(G, Ev:event) :->

109 send(G, drag, Ev),

110 get(G, outline, Outline),

111 get(Ev, receiver, Canvas),

112 send(Outline, device, @nil),

113 send(Canvas, selection, ?(Canvas, inside, Outline?area)).

114 :- pce_end_class.

47

3.4.3 Create from prototype

Prototypes have their own size, which implies creating a prototype is done using a simple

click. It �rst displays a clone of `draw canvas proto' at the position of the mouse. Next

it sends the !start text message to the created prototype to allow the user �lling the

text-�elds of the proto instance.

115 :- pce_global(@draw_create_proto_recogniser,

116 make_create_proto_recogniser).

117 make_create_proto_recogniser(R) :-

118 new(Canvas, @event?receiver),

119 new(Proto, Canvas?proto),

120 new(R, click_gesture(left, '', single,

121 block(assign(new(Clone, var), Proto?clone),

122 message(Canvas, display,

123 Clone, @event?position),

124 if(message(Clone, has_send_method,

125 start_text),

126 message(Clone, start_text))),

127 Canvas?mode == create_proto)).

3.4.4 Create resizable shape

Create shapes that do not have a prede�ned size. The top-left-corner of the object will be

at the mouse-down location, the bottom-right-corner at the mouse-up location.

128 :- pce_begin_class(draw_create_resize_gesture, gesture).

129 resource(button, button_name, left).

130 resource(modifier, modifier, '').

131 resource(cursor, cursor, bottom_right_corner).

132 resource(minimum_size, int, 3,

133 "Mimimum width/height of the object").

134 variable(object, graphical*, both,

135 "Object created").

136 verify(_G, Ev:event) :->

137 "Only active when in create resize mode"::

138 get(Ev?receiver, mode, create_resize).

Display a clone of `draw canvas proto' and attach it to the gesture. The latter is neces-

sary because @event?receiver refers to the canvas.

139 initiate(G, Ev:event) :->

140 "Paint the prototype"::

141 get(Ev, receiver, Canvas),

142 get(Canvas?proto, clone, Object),

143 send(G, object, Object),

144 send(Canvas, display, Object, Ev?position).

48

Drag is easy. The only non-standard thing it does is to disallow the width or height of the

created object to become negative.

145 drag(G, Ev:event) :->

146 "Resize the object"::

147 get(Ev, position, Pos),

148 get(G, object, Obj),

149 get(Pos, x, EX), get(Pos, y, EY),

150 get(Obj, x, OX), get(Obj, y, OY),

151 max(EX, OX, CX),

152 max(EY, OY, CY),

153 send(Obj, corner, point(CX, CY)).

154 max(A, B, M) :- A >= B, !, M = A.

155 max(_, B, B).

Terminate checks whether the created object is too small and then deletes it. It resets

the

!

object variable of the gesture. The latter is necessary to avoid a dangling reference

when the created object would be destroyed: this object does not know it is referenced by

the gesture.

156 terminate(G, Ev:event) :->

157 "Delete the object if it is too small"::

158 send(G, drag, Ev),

159 get(G, object, Obj),

160 send(G, object, @nil),

161 get(Obj, width, W),

162 get(Obj, height, H),

163 abs(W, AbsW),

164 abs(H, AbsH),

165 get(G, resource_value, minimum_size, S),

166 ((AbsW < S ; AbsH < S)

167 -> send(Obj, free)

168 ; get(Ev, receiver, Canvas),

169 send(Canvas, auto_align, Obj, create),

170 send(Canvas, modified)

171).

172 abs(X, Y) :-

173 (X < 0

174 -> Y is -X

175 ; Y = X

176).

177 :- pce_end_class.

3.4.5 Line

Creating a line is very similar to creating a resizable shape. Only, !drag sets the end-

point rather than the corner and !terminate should validate the length rather than the

minimum of width and height.

49

178 :- pce_begin_class(draw_create_line_gesture, draw_create_resize_gesture).

179 resource(cursor, cursor, plus).

180 verify(_G, Ev:event) :->

181 "Only active when in create line mode"::

182 get(Ev?receiver, mode, create_line).

183 drag(G, Ev:event) :->

184 send(G?object, end, Ev?position).

185 terminate(G, Ev:event) :->

186 send(G, drag, Ev),

187 get(G, object, Line),

188 send(G, object, @nil),

189 get(Line, length, L),

190 get(G, resource_value, minimum_size, MS),

191 (L < MS

192 -> send(Line, free)

193 ; get(Ev, receiver, Canvas),

194 send(Canvas, auto_align, Line, create)

195).

196 :- pce_end_class.

The draw change line gesture does to a line what the resize gesture does to an object that

has a real area: one can drag one of the end-points.

197 :- pce_begin_class(draw_change_line_gesture, gesture).

198 resource(button, button_name, middle).

199 resource(cursor, cursor, plus).

200 variable(side, name*, both,

201 "Start or end").

Verify tries to �nd the end-point and records the result in the variable

!

side. It fails if

the event is too far away from either end of the line.

202 verify(G, Ev:event) :->

203 get(Ev, receiver, Line),

204 get(Ev, position, Line?device, Pos),

205 (get(Line?start, distance, Pos, D),

206 D < 5

207 -> send(G, side, start)

208 ; get(Line?end, distance, Pos, D),

209 D < 5

210 -> send(G, side, end)

211 ; fail

212).

213 initiate(G, Ev:event) :->

214 get(Ev, receiver, Line),

215 send(Line?device, pointer, Line?(G?side)).

216 drag(G, Ev:event) :->

217 get(Ev, receiver, Line),

50

218 get(G, side, Side),

219 send(Line, Side, ?(Ev, position, Line?device)).

220 terminate(G, Ev:event) :->

221 send(G, drag, Ev).

222 :- pce_end_class.

3.4.6 Path

Class `draw create path gesture' is the most complicated of PceDraw's gestures because

it does not yet �t in very well with the concept of `gesture' that describes event-handling

from a button-down upto the corresponding button-up. A path is created by clicking on

each subsequent control-point.

223 :- pce_begin_class(draw_create_path_gesture, gesture).

224 resource(cursor, cursor, cross).

225 resource(button, button_name, left).

226 variable(path, path*, both, "Currently painted path").

227 variable(line, line, get, "Line segment for last").

228 initialise(G, Button:[button_name]) :->

229 send(G, send_super, initialise, Button),

230 send(G, slot, line, new(Line, line)),

231 send(Line, texture, dotted).

The !event method is rede�ned for two purposes: 1) when a path is beeing created a

dotted line is displayed from the last control-point to the current mouse location (achieved

by trapping the `loc move' events) and 2) when the user presses ESC or another mouse-

button, the path is terminated.

232 event(G, Ev:event) :->

233 "Process an event"::

234 get(Ev?receiver, mode, create_path),

235 (send(G, send_super, event, Ev)

236 -> true

237 ; get(G, path, Path), Path \== @nil,

238 (send(Ev, is_a, loc_move)

239 -> send(G, move, Ev)

240 ; (send(Ev, is_a, 27) ; send(Ev, is_a, button)) % terminate

241 -> send(Ev?window, focus, @nil),

242 send(G, terminate_path)

243)

244).

!Initiate is called on each button-down. If there is no current path it is a `real' initiate.

If there is already a current path this method just succeeds.

51

245 initiate(G, Ev:event) :->

246 "Paint the prototype"::

247 get(G, path, CurrentPath),

248 (CurrentPath == @nil

249 -> get(Ev, receiver, Canvas),

250 get(Ev, position, Canvas, Pos),

251 get(Canvas?proto, clone, Path),

252 send(G, path, Path),

253 get(G, line, Line),

254 send(Line, start, Pos),

255 send(Line, end, Pos),

256 send(Canvas, display, Line),

257 send(Canvas, display, Path)

258 ; true

259).

The method !move is called from !event when there is a current path and the mouse is

moved. It replaces the !drag method called in normal gestures when the mouse is moved

with a button pressed.

260 move(G, Ev:event) :->

261 get(G, line, Line),

262 get(Ev, position, Pos),

263 send(Line, end, Pos).

Terminate implies a button-up. This method appends the current location to the path;

moves the start of the feedback line to the end of the path and invokes `window!focus'.

The 3-th argument of this method is the button that caused the event-focus to be grabbed.

A button-up event related to this button will release the focus. By setting this button to

@nil, the focus will not be released. See also !event.

264 terminate(G, Ev:event) :->

265 send(G, move),

266 send(G?path, append, G?line?end),

267 send(G?line, start, G?line?end),

268 send(Ev?window, focus, Ev?receiver, G, G?cursor, @nil).

Terminate the path. Remove the feedback-line; set the current path to @nil and �nally

remove the path if it consists of only 1 point (similar removing text objects without

characters; graphicals smallers than a de�ned minimal size; etc.).

269 terminate_path(G) :->

270 get(G, path, Path),

271 send(G?line, device, @nil),

272 send(G, path, @nil),

273 (get(Path?points, size, Size),

274 Size =< 1

275 -> send(Path, free)

276 ; true

277).

278 :- pce_end_class.

52

The `draw modify path gesture' allows the user to drag control-points with the middle-

mouse button. The method `path point' is used to �nd the control-point.

279 :- pce_begin_class(draw_modify_path_gesture, gesture).

280 resource(cursor, cursor, plus).

281 resource(button, button_name, middle).

282 variable(point, point*, both, "Point to move").

283 verify(G, Ev:event) :->

284 "Start if event is close to point"::

285 get(Ev, receiver, Path),

286 get(Path, point, Ev, Point),

287 send(G, point, Point).

288 initiate(G, Ev:event) :->

289 "Move pointer to point"::

290 get(Ev, receiver, Path),

291 get(G, point, Point),

292 get(Path, offset, Offset),

293 get(Point, copy, P2),

294 send(P2, plus, Offset),

295 send(Path?device, pointer, P2).

296 drag(G, Ev:event) :->

297 "Move point to pointer"::

298 get(Ev, receiver, Path),

299 get(Path, device, Dev),

300 get(Ev, position, Dev, Pos),

301 get(Path, offset, Offset),

302 send(Pos, minus, Offset),

303 send(Path, set_point, G?point, Pos?x, Pos?y).

304 :- pce_end_class.

The two click-gestures below allow the user to insert/delete control-points by left-clicking

on them with the control-key depressed. If the user clicks within 3 pixels from a control-

point this point is deleted. Otherwise, if the user clicks close to a line-segment, a control-

point is inserted between the two points that de�ne the line-segment.

Note that the �rst click gesture de�nes a condition. Whether or not an event is ac-

cepted by a click gesture does not depend on the return-status of the called message.

Without a condition, the �rst click gesture will accept all left-clicks with the control-key

helt down. The second click gesture would never be activated.

305 :- pce_global(@draw_edit_path_gesture, make_draw_edit_path_gesture).

306 make_draw_edit_path_gesture(G) :-

307 new(G, handler_group),

308 send(G, append,

309 new(C1, click_gesture(left, c, single,

310 message(@receiver, delete,

311 ?(@receiver, point, @event, 3))))),

312 send(C1, condition, ?(@event?receiver, point, @event, 3)),

313 send(G, append,

53

314 click_gesture(left, c, single,

315 message(@receiver, insert,

316 ?(@event, position, @receiver?device),

317 ?(@receiver, segment, @event)))).

3.4.7 Text

The recognisers below de�ne the creation of a text object and start editing a text object.

Note the use of keyboard focus; if `Window

!

keyboard focus' is nonequal to @nil, all

typing is tranferred to the keyboard focus. Objects receive `obtain keyboard focus' and

`release keyboard focus' events when they get or loose the keyboard focus.

318 :- pce_global(@draw_create_text_recogniser,

319 make_draw_create_text_recogniser).

320 :- pce_global(@draw_edit_text_recogniser,

321 make_draw_edit_text_recogniser).

322 :- pce_global(@draw_compound_draw_text_recogniser,

323 make_draw_compound_draw_text_recogniser).

After `Device !display' the new graphical is at the end of the `Device graphicals' chain

and thus can be found using:

Canvas?graphicals?tail

Note that the last argument of the click gesture is the preview action, but may also be

used as a condition.

324 make_draw_create_text_recogniser(R) :-

325 new(Canvas, @event?receiver),

326 new(Pos, @event?position),

327 new(Text, Canvas?graphicals?tail),

328 new(R, click_gesture(left, '', single,

329 block(message(Canvas, display,

330 Canvas?proto?clone, Pos),

331 message(Canvas, keyboard_focus, Text),

332 message(Canvas, auto_align, Text, create)),

333 Canvas?mode == create_text)).

334 make_draw_edit_text_recogniser(R) :-

335 new(Text, @event?receiver),

336 new(Canvas, Text?window),

337 new(Pointed, ?(Text, pointed, @event?position)),

338 new(R, click_gesture(left, '', single,

339 block(message(Text, caret, Pointed),

340 message(Canvas, keyboard_focus, Text)),

341 Canvas?mode == edit_text)).

342 make_draw_compound_draw_text_recogniser(R) :-

343 new(Compound, @event?receiver),

344 new(Canvas, Compound?window),

345 new(R, click_gesture(left, '', single,

346 message(Compound, start_text, @event),

347 Canvas?mode == edit_text)).

54

3.4.8 Move

The move selection gesture is active when an object is moved that is selected and there

are more objects selected. In this case all selected objects are moved by the same amount.

This is indicated by showing an outline that reects the bounding box of all objects moved.

This gesture illustrates how another gesture can be encapsulated. It is a subclass of

`move gesture' to inherit the button and modi�er resources.

348 :- pce_begin_class(draw_move_selection_gesture, move_gesture).

349 variable(outline, box, get,

350 "Box used to indicate move").

351 variable(selection, chain*, both,

352 "Stored value of device selection").

353 variable(origin, point, get,

354 "Start origin of selection").

The gesture maintains an outline, the selection to be moved and the positon where the

move orginiated. The outline itself is given a normal move gesture to make it move on

dragging. This move gesture should operate on the same button and modi�er.

355 initialise(G, B:[button_name], M:[modifier]) :->

356 send(G, send_super, initialise, B, M),

357 send(G, slot, outline, new(Box, box(0,0))),

358 send(G, slot, origin, point(0,0)),

359 send(Box, texture, dotted),

360 send(Box, recogniser, move_gesture(G?button, G?modifier)).

Verify the object is selected and there is at least one more object selected.

361 verify(_G, Ev:event) :->

362 get(Ev, receiver, Receiver),

363 get(Receiver, selected, @on),

364 get(Receiver?device?graphicals, find,

365 and(@arg1?selected == @on,

366 @arg1 \== Receiver), _).

Initiating implies �nding the device and the bounding box of all selected objects (= the

`union' of their areas). Next, the outline is displayed and all events are posted to the

outline. The move gesture of the outline ensures the outline is moved by the dragging

events.

367 initiate(G, Ev:event) :->

368 get(Ev?receiver, device, Dev),

369 get(G, outline, Outline),

370 send(G, selection, Dev?selection),

371 get(G, selection, Selection),

372 new(Union, area(0,0,0,0)),

373 send(Selection, for_all, message(Union, union, @arg1?area)),

374 send(G?origin, copy, Union?position),

375 send(Outline, area, Union),

376 send(Union, done),

55

377 send(Dev, display, Outline),

378 send(Ev, post, Outline).

379 drag(G, Ev) :->

380 send(Ev, post, G?outline).

Terminate. First undisplay the outline. Next calculate by how much the outline has been

dragged and move all objects of the selection by this amount.

381 terminate(G, Ev:event) :->

382 send(G, drag, Ev),

383 get(G, outline, Outline),

384 send(Outline, device, @nil),

385 get(Outline?area?position, difference, G?origin, Offset),

386 send(G?selection, for_all, message(@arg1, relative_move, Offset)),

387 send(G, selection, @nil),

388 send(Ev?receiver?window, modified).

389 :- pce_end_class.

3.4.9 Resize

Resizing the selection is very similar to moving it. Resizing a group of object implies

�nding the origin of the resize (e.i. the coordinates of the corner of the resized area that

does not move) and the resize factor in both X and Y-direction. Thus, the following steps

are taken:

1. On initiating, display a box indicating the bounding box of the selection and start

resizing this box.

2. After resizing of the bounding box is completed, compute the static origin and the

resize factors.

3. Send a !resize message to all the individual graphicals.

390 :- pce_begin_class(draw_resize_selection_gesture, resize_gesture).

391 variable(outline, box, get,

392 "Box used for feedback").

393 variable(selection, chain*, both,

394 "Stored value of device selection").

395 variable(start, area, get,

396 "Area before resize started").

The outline operates the same way as the outline of the selection move handler.

397 initialise(G, B:[button_name], M:[modifier]) :->

398 send(G, send_super, initialise, B, M),

399 send(G, slot, outline, new(Box, box(0,0))),

400 send(G, slot, start, area(0,0,0,0)),

401 send(Box, texture, dotted),

402 send(G, min_size, size(3, 3)),

403 send(Box, recogniser, resize_gesture(G?button, G?modifier)).

56

404 verify(G, Ev:event) :->

405 get(Ev, receiver, Receiver),

406 get(Receiver, selected, @on),

407 send(G, send_super, verify, Ev).

Compute the bounding box of the selection, display the outline and post the event to the

outline.

408 initiate(G, Ev:event) :->

409 get(Ev?receiver, device, Dev),

410 get(G, outline, Outline),

411 send(G, selection, Dev?selection),

412 get(G, selection, Selection),

413 get(G, start, Start),

414 send(Start, clear),

415 send(Selection, for_all, message(Start, union, @arg1?area)),

416 send(Outline, area, Start),

417 send(Dev, display, Outline),

418 (send(Ev, post, Outline) % cancel!

419 -> true

420 ; send(Outline, device, @nil),

421 send(G, selection, @nil),

422 fail

423).

424 drag(G, Ev) :->

425 send(Ev, post, G?outline).

Compute the resize factors and resize the contents of the selection.

426 terminate(G, Ev:event) :->

427 send(G, drag, Ev),

428 get(G, outline, Outline),

429 send(Outline, device, @nil),

430 get(G, start, A0),

431 get(Outline, area, A1),

432 x_resize(A0, A1, X0, Xfactor),

433 y_resize(A0, A1, Y0, Yfactor),

434 send(G?selection, for_all,

435 message(@arg1, resize, Xfactor, Yfactor, point(X0, Y0))),

436 send(G, selection, @nil),

437 send(Ev?receiver?window, modified).

438 x_resize(A0, A1, X0, Xfactor) :-

439 get(A0, left_side, Left),

440 get(A1, left_side, Left), !, % left-side has not changed

441 X0 = Left,

442 get(A0, width, W0),

443 get(A1, width, W1),

444 Xfactor is W1 / W0.

445 x_resize(A0, A1, X0, Xfactor) :-

446 get(A0, right_side, Right),

57

447 X0 = Right,

448 get(A0, width, W0),

449 get(A1, width, W1),

450 Xfactor is W1 / W0.

451 y_resize(A0, A1, Y0, Yfactor) :-

452 get(A0, top_side, Top),

453 get(A1, top_side, Top), !, % top has not changed

454 Y0 = Top,

455 get(A0, height, H0),

456 get(A1, height, H1),

457 Yfactor is H1 / H0.

458 y_resize(A0, A1, Y0, Yfactor) :-

459 get(A0, bottom_side, Bottom),

460 Y0 = Bottom,

461 get(A0, height, H0),

462 get(A1, height, H1),

463 Yfactor is H1 / H0.

464 :- pce_end_class.

465 :- pce_begin_class(draw_resize_gesture, resize_outline_gesture).

466 terminate(G, Ev:event) :->

467 "Invoke auto align"::

468 send(G, send_super, terminate, Ev),

469 get(Ev, receiver, Shape),

470 send(Shape?device, auto_align, Shape, resize).

471 :- pce_end_class.

472 :- pce_begin_class(draw_move_gesture, move_outline_gesture).

473 terminate(G, Ev:event) :->

474 "Invoke auto align"::

475 send(G, send_super, terminate, Ev),

476 get(Ev, receiver, Shape),

477 send(Shape?device, auto_align, Shape, move).

478 :- pce_end_class.

3.4.10 Connect

The code below is a re�nement of the connect gesture de�ned in PCE itself. It veri�es

the canvas is in the right mode and sets the

!

link attribute of the gesture. This attribute

will later be used to create the connection from.

The `connect gesture !connect' behaviour has been rede�ned as well. The standard

one uses a `connection', while this one should create a `draw connection'.

479 :- pce_begin_class(draw_connect_gesture, connect_gesture).

480 verify(G, Ev:event) :->

481 "Verify canvas is in connect-mode"::

482 get(Ev?receiver, device, Dev), Dev \== @nil,

483 get(Dev, mode, connect),

58

484 send(G, link, Dev?proto),

485 send(G, send_super, verify, Ev).

486 connect(_G, From:graphical, To:graphical, Link:link,

487 FH:[name], TH:[name]) :->

488 "Connect the graphicals (using a draw connection)"::

489 new(_, draw_connection(From, To, Link, FH, TH)).

490 :- pce_end_class.

3.4.11 Connect create handle

491 :- pce_begin_class(draw_connect_create_gesture, gesture).

The `draw connect create gesture' is an example of a complete gesture class. It connects

two graphicals at arbitrary points by attaching new handles to the graphicals and creating

a connection between them.

492 variable(line, line, get,

493 "Line indicating link").

494 variable(from_indicator, bitmap, get,

495 "Indicator at `from' side").

496 variable(to_indicator, bitmap, get,

497 "Indicator at `to' side").

498 variable(to, graphical*, get,

499 "Graphical to connect to").

500 resource(button, button_name, left,

501 "Button used to connect (left)").

502 resource(modifier, modifier, '',

503 "Modifier used to connect").

Initialise the line and markers of the gesture.

504 initialise(G, B:[button_name], M:[modifier]) :->

505 send(G, send_super, initialise, B, M),

506 send(G, slot, line, line(0,0,0,0)),

507 send(G, slot, from_indicator, new(bitmap(@mark_handle_image))),

508 send(G, slot, to_indicator, new(bitmap(@mark_handle_image))).

509 verify(_G, Ev:event) :->

510 "Verify canvas is in connect create-mode"::

511 get(Ev?receiver?device, mode, connect_create).

Indicate the start-location using the from indicator, give the feedback-line the appro-

priate attributes and display it.

512 initiate(G, Ev:event) :->

513 "Start drawing line"::

514 get(Ev?receiver, device, Dev),

515 get(Dev, proto, Link),

516 get(Ev, position, Dev, Pos),

517 send(G?line, copy, Link?line),

59

518 send(G?line, texture, dotted),

519 send(G?line, start, Pos),

520 send(G?line, end, Pos),

521 send(Dev, display, G?line),

522 send(G, indicate, Ev?receiver, Pos, G?from_indicator).

Update the line, check whether the mouse points to a valid target and display a marker on

it. Note how the target is located using the method `Chain �nd'. This keeps everything

inside PCE, avoiding interface overhead and producing far less garbage. `Gesture !drag'

should be as fast as possible and not produce too much garbage as it will be called about

40 times per second while the mouse is dragged.

523 drag(G, Ev:event) :->

524 get(Ev, receiver, Receiver),

525 get(Receiver, device, Dev),

526 get(Ev, position, Dev, Pos),

527 send(G?line, end, Pos),

528 (get(?(Dev, pointed_objects, Pos), find,

529 and(Receiver \== @arg1,

530 G?line \== @arg1,

531 G?from_indicator \== @arg1,

532 G?to_indicator \== @arg1), To)

533 -> send(G, indicate, To, Pos, G?to_indicator),

534 send(G, slot, to, To)

535 ; send(G, slot, to, @nil),

536 send(G?to_indicator, device, @nil)

537).

If there is a target, create unique handles on both sides and link them together.

538 terminate(G, Ev:event) :->

539 send(G, drag, Ev),

540 send(G?line, device, @nil),

541 send(G?from_indicator, device, @nil),

542 send(G?to_indicator, device, @nil),

543 get(G, to, To),

544 (To \== @nil

545 -> send(G, slot, to, @nil),

546 get(Ev, receiver, Receiver),

547 get(Receiver?device, proto, Link),

548 get(G, handle, Receiver, G?from_indicator?center, Link?from, FH),

549 get(G, handle, To, G?to_indicator?center, Link?to, TH),

550 new(_, draw_connection(Receiver, To, Link, FH, TH))

551 ; true

552).

Create a unique handle on a graphical at the indicated position. The position of the handle

is taken relative to the size of the graphical.

60

553 handle(_G, Gr:graphical, Pos:point, Kind:name, Name) :<-

554 "Attach a handle at speci�ed position and return it's name"::

555 get(Gr, x, X), get(Gr, y, Y),

556 get(Gr, width, W), get(Gr, height, H),

557 get(Pos, x, PX), get(Pos, y, PY),

558 RX is PX - X, RY is PY - Y,

559 unique_handle_name(Gr, Name),

560 send(Gr, handle, handle((RX/W) * w, (RY/H) * h, Kind, Name)).

561 unique_handle_name(Gr, Name) :-

562 between(1, 10000, N),

563 concat(c, N, Name),

564 \+ get(Gr, handle, Name, _), !.

565 indicate(_G, Gr:graphical, Pos:point, Indicator:bitmap) :->

566 "Display indication-marker for position"::

567 send(Indicator, center, Pos),

568 send(Gr?device, display, Indicator).

569 :- pce_end_class.

3.4.12 Shape popup

The code of this section attaches a popup-menu to the shapes. On a mouse-right-down

event, the shape on which the down occurred is selected to indicate on which object the

operation will take place. Next, the menu is shown.

570 :- pce_global(@draw_shape_popup_gesture, make_draw_shape_popup_gesture).

571 make_draw_shape_popup_gesture(G) :-

572 new(Gr, @event?receiver),

573 new(Canvas, Gr?device),

574 new(P, popup),

575 send_list(P, append,

576 [menu_item(align,

577 message(Canvas, align_with_selection, Gr),

578 @default, @on)

579 , menu_item(duplicate,

580 block(message(Canvas, selection, Gr),

581 message(Canvas, duplicate_selection)))

582 , menu_item(cut,

583 message(Canvas, edit,

584 message(@arg1, free), Gr),

585 @default, @on)

586 , menu_item(edit_attributes,

587 block(message(Canvas, selection, Gr),

588 message(Canvas, edit_selection)),

589 @default, @on)

590 , menu_item(hide,

591 message(Canvas, edit,

592 message(@arg1, hide), Gr))

593 , menu_item(expose,

61

594 message(Canvas, edit,

595 message(@arg1, expose), Gr),

596 @default, @on)

597]),

598 new(G, draw_draw_shape_popup_gesture(P)).

599 :- pce_begin_class(draw_draw_shape_popup_gesture, popup_gesture).

600 variable(old_selected, bool*, both, "Was graphical selected").

601 verify(G, Ev:event) :->

602 get(Ev?receiver, device, Dev),

603 Dev \== @nil,

604 send(Dev?class, is_a, draw_canvas),

605 send(G, send_super, verify, Ev).

606 initiate(G, Ev:event) :->

607 get(Ev, receiver, Receiver),

608 send(G, old_selected, Receiver?selected),

609 send(Receiver, selected, @on),

610 send(G, send_super, initiate, Ev).

611 terminate(G, Ev:event) :->

612 get(G, context, Gr),

613 send(Gr, selected, G?old_selected),

614 send(G, send_super, terminate, Ev).

615 :- pce_end_class.

62

3.5 Source �le \menu.pl"

1 /* $Id: menu.pl,v 1.7 1993/09/03 09:52:18 jan Exp $

2 Part of XPCE

3 Designed and implemented by Anjo Anjewierden and Jan Wielemaker

4 E-mail: jan@swi.psy.uva.nl

5 Copyright (C) 1992 University of Amsterdam. All rights reserved.

6 */

This module de�nes the mode-selection menu at the left-side of the canvas. It consists

of two classes: draw menu, which is a subclass of picture and which is responsible for

communication, load/save, etc. and draw icon, which de�nes the combination of a mode,

a cursor and a prototype.

There are two reasonable primitives for implementing this menu. The �rst is to use a

dialog window and a choice menu, of which the menu items have image labels. The second

is the approach taken in this �le, to use a picture with a 1-column format attached to it

and images for the options. Which of them is to be preferred is di�cult to tell. Both

approaches require about the same amount of programming. I've chosen for the latter

approach, partly for `historical' reasons and partly to illustrate how non-standard menus

can be created using ordinary graphicals.

As the user can modify the menu by adding/deleting prototypes and changing proto-

type attributes, the contents of this menu can be saved to �le.

7 :- module(draw_menu, []).

8 :- use_module(library(pce)).

9 :- require([concat/3

10 , ignore/1

11 , memberchk/2

12 , send_list/3

13]).

3.5.1 Icon menu

14 :- pce_begin_class(draw_menu, window).

Variables to keep track of load/save.

15 variable(file, file*, both,

16 "File for storing prototypes").

17 variable(modified, bool, get,

18 "Menu has been modified").

Create the picture. The width of the picture is �xed using the !hor stretch and

!hor shrink methods. Next, a `format' object is attached to the picture. When a format

is attached to a device, the graphicals are located according to the format speci�cation.

Attaching a format object to a device is a simple way to represent tabular information in

PCE.

11

11

Formats are a rather hacky solution. There are plans to extend them with a more powerful table

mechanisms.

63

19 initialise(M) :->

20 send(M, send_super, initialise, 'Icons', size(48, 200)),

21 send_list(M, [hor_stretch, hor_shrink], 0),

22 send(M, format, new(Fmt, format(horizontal, 1, @on))),

23 send(Fmt, row_sep, 0),

24 send(M, modified, @off).

25 modified(M, Value:[bool]) :->

26 default(Value, @on, Val),

27 send(M, slot, modified, Val).

Attach a new prototype. Note that we do not have to specify a position as the attached

format object will ensure the new icon is displayed at the bottom.

28 proto(M, Proto:'graphical|link*', Mode:name, Cursor:cursor) :->

29 "Attach a new prototype"::

30 send(M, display, draw_icon(Proto, Mode, Cursor)),

31 send(M, modified, @on).

32 current(M, Icon) :<-

33 "Find current icon"::

34 get(M?graphicals, find, @arg1?inverted == @on, Icon).

35 activate_select(M) :->

36 "Activate icon that does select"::

37 get(M?graphicals, find, @arg1?mode == select, Icon),

38 send(Icon, activate).

3.5.2 Create

Create a prototype from a chain of graphicals (usually the selection; in the future this

might also come from a prototype editor). If the chain has one element, no compound is

needed.

12

39 create_proto(M, Graphicals:chain) :->

40 "Create a prototype from a chain of graphicals"::

41 get(Graphicals, size, Size),

42 (Size == 0

43 -> send(@display, inform, 'No selection')

44 ; Size == 1

45 -> get(Graphicals?head, clone, Proto),

46 send(Proto, selected, @off)

47 ; new(Proto, draw_compound),

48 get(Graphicals, clone, Members),

49 send(Members, for_all,

50 and(message(Proto, display, @arg1),

51 message(@arg1, selected, @off))),

12

Due to the improper functioning of clone with regards to connections to the outside world, all

connections should be internal to the chain of graphicals. We won't try to program around this problem

here, but improve PCE's kloning schema later.

64

52 send(Proto, reference, @default),

53 send(Proto, string, '')

54),

55 send(M, proto, Proto, create_proto, dotbox).

3.5.3 Delete

56 can_delete(M) :->

57 "Test if current prototype may be deleted"::

58 get(M, current, Icon),

59 send(Icon, can_delete).

60 delete(M) :->

61 "Delete current prototype"::

62 get(M, current, Icon),

63 (send(Icon, can_delete)

64 -> send(M, activate_select),

65 send(Icon, free),

66 send(M, modified, @on)

67 ; send(@display, inform, 'Can''t delete this prototype'),

68 fail

69).

3.5.4 Save/load

Saving/loading is very similar to the corresponding code in canvas.pl.

70 save_as(M) :->

71 "Save in user-requested �le"::

72 get(@finder, file, @off, '.proto', File),

73 send(M, save, File).

74 save(M, File:[file]) :->

75 "Save prototypes to named �le"::

76 (File == @default

77 -> get(M, file, SaveFile),

78 SaveFile \== @nil

79 ; send(M, file, File),

80 SaveFile = File

81),

82 send(M?graphicals, save_in_file, SaveFile),

83 send(M, modified, @off).

84 load_from(M) :->

85 "Load from user-requested �le"::

86 get(@finder, file, @on, '.proto', File),

87 send(M, load, File).

88 load(M, File:[file]) :->

89 "Load prototypes from named �le"::

90 (File == @default

65

91 -> get(M, file, LoadFile),

92 LoadFile \== @nil

93 ; send(M, file, File),

94 LoadFile = File

95),

96 send(M, clear),

97 get(LoadFile, object, Chain),

98 send(Chain, for_all, message(M, display, @arg1)),

99 send(M?graphicals?head, activate),

100 send(M, modified, @off).

101 :- pce_end_class.

3.5.5 Icons

We have chosen to specialise class `bitmap' to represent the icon. Each icon represents

a prototype, a mode and a cursor that is used by the canvas to indicate the mode. The

visual representation of an icon is an outline that indicates the mode and a small version

of the prototype to indicate what is drawn.

There are two reasonable choices for this job. One is to use a subclass of device and

display the outline and a resized clone of the prototype. The other is to use class bitmap

and draw a clone of the prototype in it. It is di�cult to say which of the two is better. I

�nally decided that just a bitmap is cheaper to save (considering the fact that the device

case holds a bitmap of the same size too). Another criterium is how di�cult it is to

change an argument of the prototype. For a device this is slightly simpler as we just

pass the message to change the argument to the prototype and the clone of the prototype

displayed in the icon. Using a bitmap, we have to recompute the contents of the bitmap.

This however is not very hard.

102 :- pce_begin_class(draw_icon, bitmap).

103 variable(proto, 'graphical|link*', get,

104 "Prototype represented").

105 variable(mode, name, both,

106 "Mode initiated by the icon").

107 variable(mode_cursor, name, both,

108 "Associated cursor-name").

109 initialise(I, Proto:'graphical|link*', Mode:name, Cursor:cursor) :->

110 "Create an icon for a speci�c mode"::

111 send(I, send_super, initialise, image(@nil, 48, 32)),

112 send(I, mode, Mode),

113 send(I, proto, Proto),

114 send(I, slot, mode_cursor, Cursor?name).

115 can_delete(I) :->

116 "Can I delete this icon?"::

117 get(I, mode, create_proto).

66

3.5.6 Prototypes

118 proto(I, Proto:'graphical|link*') :->

119 "Set the prototype"::

120 send(I, slot, proto, Proto),

121 send(I, paint_proto, Proto).

Create the image of the icon. First, we will paint the outline, indicating the mode. Next,

we make a copy of the prototype (because we have to modify it and we should not change

the original prototype), modify the text to `T' and the size to �t in the icon. Finally, we

draw the prototype in the icon and send `Object !done' to the clone to inform PCE we

have done with it.

122 paint_proto(I, Proto:'link|graphical*') :->

123 "Paint a small version of the prototype"::

124 send(I, paint_outline),

125 (Proto == @nil

126 -> true

127 ; send(Proto, instance_of, link)

128 -> get(Proto?line, clone, Clone),

129 send(Clone, points, 11, 10, 27, 20),

130 send(I, draw_in, Clone)

131 ; send(Proto, instance_of, path),

132 send(Proto?points, empty)

133 -> get(Proto, clone, Clone),

134 send(Clone, clear),

135 send(Clone, append, point(10,10)),

136 send(Clone, append, point(20,7)),

137 send(Clone, append, point(30,15)),

138 send(Clone, append, point(15,21)),

139 send(I, draw_in, Clone)

140 ; get(Proto, clone, Clone),

141 (send(Clone, has_send_method, string)

142 -> send(Clone, string, 'T')

143 ; true

144),

145 send(Clone, size, size(30, 14)),

146 send(Clone, center, point(22, 14)),

147 send(I, draw_in, Clone)

148).

Paint the outline in the bitmap. For each of the outlines, there is a bitmap �le named

`Mode.bm' in PCE's bitmap search-path. We copy this image in the bitmap.

149 paint_outline(I) :->

150 "Paint the mode indicating bitmap"::

151 get(I, mode, Mode),

152 concat(Mode, '.bm', Outline),

153 send(I, copy, image(Outline)).

67

3.5.7 Attributes

These two methods from the interface to the attribute editor. See also the �les `at-

tribute.pl' and `shape.pl'. Note that prototypes do not have a position and therefore the

`x' and `y' should not be regarded arguments.

154 has_attribute(I, Att:name) :->

155 "Test if prototype has named attribute"::

156 \+ memberchk(Att, [x, y]),

157 send(I?proto, has_attribute, Att).

158 attribute(I, Att:name, Val:any) :->

159 "Set attribute of prototype"::

160 send(I?proto, Att, Val),

161 send(I, repaint_proto),

162 send(I?window, modified, @on).

3.5.8 Activation

The event parsing. Currently we only de�ne left-click to activate the icon. Activating the

gesture is done via the !event method, so the gestures won't be saved to �le.

163 :- pce_global(@icon_recogniser,

164 new(handler_group(click_gesture(left, '', single,

165 message(@event?receiver,

166 activate))))).

167 event(_I, Ev:event) :->

168 send(@icon_recogniser, event, Ev).

Activate an icon. First it sets `Graphical!inverted' to @on for only this icon in the menu.

Note the use of `Device!for all' and `if'. This is the most e�cient way to reach our goals,

both in terms of the amount of code we have to write as in terms of performance.

169 activate(I) :->

170 "Select the icon; set mode and proto"::

171 send(I?device, for_all, @default,

172 if(@arg1 == I,

173 message(@arg1, inverted, @on),

174 message(@arg1, inverted, @off))),

175 send(I?frame, mode, I?mode, I?mode_cursor),

176 send(I?frame, proto, I?proto).

177 :- pce_end_class.

68

3.6 Source �le \attribute.pl"

1 /* $Id: attribute.pl,v 1.6 1993/05/06 10:12:56 jan Exp $

2 Part of XPCE

3 Designed and implemented by Anjo Anjewierden and Jan Wielemaker

4 E-mail: jan@swi.psy.uva.nl

5 Copyright (C) 1992 University of Amsterdam. All rights reserved.

6 */

7 :- module(draw_attribute, []).

8 :- use_module(library(pce)).

9 :- require([concat_atom/2

10 , member/2

11 , send_list/3

12]).

This module de�nes a separate frame that allows the user to set the values of attributes

(pen, font, etc.) of shapes in the drawing. The frame contains a single dialog window,

which contains dialog items for each of the (graphical shape) attributes that can be edited.

Regardless of the shape(s) for which we are editing attributes, all dialog items are

always displayed. Items that represent attributes not present in the shapes edited are

greyed out to indicate such to the user. As the contents of the window changes each time

the user changes the selection, non-used items are not removed from the dialog. This

would change too much to the dialog, transforming the interface into a \video clip".

13 :- pce_begin_class(draw_attribute_editor, frame).

14 variable(editor, object, get,

15 "Editor I'm attached too").

16 variable(client, chain*, get,

17 "Objects I'm editing the attributes for").

18 % attributes(?Label, ?Selector)

19 %

20 % Label is the label of the menu is the dialog. Selector is the

21 % name of the method to be activated to change the value. Used

22 % both ways around and only local to this file, Prolog is a far

23 % easier way to store this table. The alternative would be to

24 % create a sheet and attach it to the class. This needs

25 % extensions to the preprocessor.

26 attribute(pen, pen).

27 attribute(dash, texture).

28 attribute(arrows, arrows).

29 attribute(fill, fill_pattern).

30 attribute(colour, colour).

31 attribute(family, font).

32 attribute(size, font).

33 attribute(transparent, transparent).

34 attribute(radius, radius).

35 attribute(x, x).

36 attribute(y, y).

69

37 attribute(w, width).

38 attribute(h, height).

39 attribute(closed, closed).

40 attribute(interpolation,interpolation).

Create the attribute window. Like the drawing-tool as a whole, the window is a subclass

of the PCE class `frame' for simple communication with its various parts. Note the use of

default/3.

`Frame

!

done message' is activated when the frame receives a DELETE message from

the window manager, normally from a `Delete Window' entry of the window manager.

41 initialise(A, Draw:object, Label:[name]) :->

42 default(Label, 'Attributes', Lbl),

43 send(A, send_super, initialise, Lbl),

44 send(A, done_message, message(A, quit)),

45 send(A, append, new(D, dialog)),

46 send(A, slot, editor, Draw),

47 fill_dialog(D).

Fill the dialog with the various menus. We de�ned some generic Prolog predicates to

create the various menu's.

48 fill_dialog(D) :-

49 new(A, D?frame),

50 send(D, append, label(feedback, '')),

51 make_line_menu(Pen, pen, [0,1,2,3,4,5]),

52 make_line_menu(Texture, texture, [none, dotted, dashed, dashdot]),

53 make_line_menu(Arrows, arrows, [none, second, first, both]),

54 make_fill_pattern_menu(FillPattern),

55 make_colour_menu(Colour),

56 make_font_family_menu(FontFamily),

57 make_font_size_menu(FontSize),

58 make_transparent_menu(Transparent),

59 make_coordinate_menu(X, x),

60 make_coordinate_menu(Y, y),

61 make_coordinate_menu(W, width),

62 make_coordinate_menu(H, height),

63 make_radius_menu(Radius),

64 make_closed_menu(Closed),

65 make_interpolation_menu(Interpolation),

66 send_list([Closed, Interpolation], align_in_column, @off),

67 send_list(D, append,

68 [Pen, Texture, Arrows, FillPattern, Colour, Radius, Closed]),

69 send(D, append, Interpolation, right),

70 send(D, append, FontFamily),

71 send(D, append, FontSize),

72 send(D, append, Transparent),

73 send(D, append, X),

74 send(D, append, Y, right),

75 send(D, append, W, right),

70

76 send(D, append, H, right),

77 send(D, append, button(quit, message(A, quit, @on))).

3.6.1 Menu's

To create the menu's, we de�ned a predicate make proto menu/4. Each menu item has as

value the attribute value and as label an image with the prototype with the corresponding

value set. Using this approach, the user can easily see what a speci�c attribute means.

When the user selects a menu-item, the menu will send the value itself.

78 make_line_menu(Menu, Attribute, Values) :-

79 new(Proto, line(2, 8, 28, 8)),

80 make_proto_menu(Menu, Proto, Attribute, Values),

81 send(Proto, done).

82 make_fill_pattern_menu(Menu) :-

83 new(Proto, box(30, 16)),

84 make_proto_menu(Menu, Proto, fill_pattern,

85 [@nil

86 , @white_image

87 , @grey12_image

88 , @grey25_image

89 , @grey50_image

90 , @grey75_image

91 , @black_image

92]),

93 send(Proto, done).

The colour menu. When the display is not a colour display, the only possible colours of

an object are @default (implying the colour of the device), `white' and `black'. On colour

displays we will show some more possibilities. For a somewhat larger set of choices, a cycle

menu may be more appropriate.

Currently the only way to �nd out whether you are using a black-and-white or colour

display is `@display depth'. This is the number of bits the screen uses to represent a

single pixel.

Note that the colour palette is constructed from a box with @black image �ll pattern.

The problem here is the name of @black image. It does not represent the colour black,

but only an image with all pixels set to 1.

94 colour_display :-

95 \+ get(@display, depth, 1).

96 colour(white).

97 colour(Colour) :-

98 colour_display,

99 colour_display_colour(Colour).

100 colour(black).

101 colour_display_colour(red).

102 colour_display_colour(green).

71

103 colour_display_colour(blue).

104 colour_display_colour(yellow).

105 make_colour_menu(Menu) :-

106 new(Proto, box(30, 16)),

107 send(Proto, fill_pattern, @black_image),

108 findall(colour(Colour), colour(Colour), Colours),

109 make_proto_menu(Menu, Proto, colour, [@default|Colours]),

110 send(Proto, done).

The menu below is for the `transparent' attribute of text. When @on (default), only the

pixels of the font are a�ected. Otherwise, the bounding box of the text will be cleared

�rst. Non-transparent text is often used to mark lines or display on top of �lled areas.

111 make_transparent_menu(Menu) :-

112 new(Proto, figure),

113 send(Proto, display, new(B, box(30,16))),

114 send(B, fill_pattern, @grey50_image),

115 send(Proto, display, new(T, text('T', left,

116 font(screen, roman, 10)))),

117 send(T, center, B?center),

118 send(Proto, send_method, send_method(transparent, vector(bool),

119 message(T, transparent, @arg1))),

120 make_proto_menu(Menu, Proto, transparent, [@on, @off]),

121 send(Proto, done).

Create a menu for some prototype attribute. Each menu item has a `menu item

!

value'

equal to the corresponding element of the `Values' chain. Each label is a image with an

outline-box and `Proto' with the appropriate attribute setting drawn into it.

122 :- pce_global(@menu_proto_box, new(box(30,16))).

123 make_proto_menu(Menu, Proto, Attribute, Values) :-

124 attribute(Label, Attribute),

125 new(Menu, menu(Label, marked,

126 message(@receiver?frame, client_attribute,

127 Attribute, @arg1))),

128 send(Menu, off_image, @nil),

129 send(Menu, layout, horizontal),

130 (member(Value, Values),

131 send(Proto, Attribute, Value),

132 new(Bm, bitmap(image(@nil, 30, 16, pixmap))),

133 send(Bm, draw_in, @menu_proto_box),

134 send(Bm, draw_in, Proto),

135 send(Menu, append, menu_item(Value, @default, Bm)),

136 fail

137 ; true

138).

72

The coordibate menu is a rather trivial text item. Note the setting of the �eld-width

and `dialog item !auto label align: @off'. The latter places the items just right to one

another instead of vertically aligned in columns.

13

139 make_coordinate_menu(Menu, Selector) :-

140 attribute(Label, Selector),

141 new(Menu, text_item(Label, 0,

142 message(@receiver?frame, client_attribute,

143 Selector, @arg1))),

144 send(Menu, width, 5),

145 send(Menu, auto_label_align, @off),

146 send(Menu, align_in_column, @off).

The radius of a box is the radius of the circle sections (arcs) used for rounding the corners.

As the user propably does not want to specify an exact number of pixels, a slider-menu

is used. As a disadvantage, the range has to be speci�ed in advance, and 100 is not

the absolute limit. Note that by setting both the range and the width to 100, the slider

operates 1:1.

147 make_radius_menu(Menu) :-

148 attribute(Label, radius),

149 new(Menu, slider(Label, 0, 100, 0,

150 message(@receiver?frame, client_attribute,

151 radius, @arg1))),

152 send(Menu, drag, @on),

153 send(Menu, width, 100).

154 make_closed_menu(Menu) :-

155 attribute(Label, closed),

156 new(Menu, menu(Label, marked,

157 message(@receiver?frame, client_attribute,

158 closed, @arg1))),

159 send_list(Menu, append, [@off, @on]).

160 make_interpolation_menu(Menu) :-

161 attribute(Label, interpolation),

162 new(Menu, slider(Label, 0, 10, 0,

163 message(@receiver?frame, client_attribute,

164 interpolation, @arg1))),

165 send(Menu, width, 100).

3.6.2 Fonts

Fonts form the most di�cult part of the menu's. This is because, although font is just a

simple attribute of a text, it is more natural to split the menu in a font-family member

and a point-size menu. These menu's have to communicate with the standard protocol,

but need to communicate to each other as well.

Below is a list of the font families that can be used from the editor.

13

We should make a subclass to allow for entering integers only. To do this properly, we should know

about each keystroke in the menu rather than only the return.

73

166 font_family(helvetica, roman).

167 font_family(helvetica, bold).

168 font_family(helvetica, oblique).

169 font_family(courier, roman).

170 font_family(courier, bold).

171 font_family(courier, oblique).

172 font_family(times, roman).

173 font_family(times, bold).

174 font_family(times, italic).

175 font_family_name(font(Fam, Style, _), Name) :-

176 concat_atom([Fam, -, Style], Name).

Below is an example of object-level programming. I'm aware that its sole contribution

to understanding PCE may be indicating PCE is not that simple to use as its developers

claim. Having decent support for class-level programming by means of Prolog's term

expansion and no support for object-level programming, class level programming will

propably be used there were object-level programming would have been much simpler and

cheaper (in terms of memory requirements). This problem has to be dealt with.

The menu is a simple cycle menu with one additional and one rede�ned send method

attached to it at the object level. The `!append: font' method appends a menu item with

!

value the font and label the point-size of the font. Note that we can't use

... append, menu_item(@arg1, @default, @arg1?points) ...

As this construct would be expanded to a menu item at creation-time of the message,

while we want the message to create a new menu item instance from @arg1 (bound to the

argument font). Hence we use the `@pce instance' construct.

The second method rede�nes setting the selection. In this case, the menu items are

replaced by menu items that indicate the possible sizes of this font and the selection is set

to the proper size. First of all, the font is put in a local variable `font' because @arg1 will

be rebound in the `Chain !for all' to the subsequent member of the @fonts database.

The variable is declared with the variable(font,font) construct, set using `@block!font,

Font' and read using `@block font'. @block is a reference to the currently executing

block(-statement).

The `Chain !for all' will append all fonts with the same family to the menu. Finally,

the selection of the menu is set to the font.

177 make_font_size_menu(Menu) :-

178 new(Menu, menu(size, cycle,

179 message(@receiver?frame, client_attribute,

180 font, @arg1))),

181 send(Menu, send_method, send_method(append, vector(font),

182 message(Menu, send_class, append,

183 ?(@pce, instance, menu_item,

184 @arg1, @default, @arg1?points)))),

185 send(Menu, send_method, send_method(selection, vector(font),

186 block(assign(new(F, var(font)), @arg1),

187 message(Menu, clear),

74

188 message(@fonts, for_all,

189 if(and(@arg2?family == F?family,

190 @arg2?style == F?style),

191 message(Menu, append, @arg2))),

192 message(Menu?members, sort,

193 @arg1?value?points < @arg2?value?points),

194 message(Menu, send_class, selection, @arg1)))).

195 make_font_family_menu(Menu) :-

196 findall(font(Fam, Style, 14), font_family(Fam, Style), Fonts),

197 new(Menu, menu(family, cycle,

198 message(@receiver?frame, font_family, @arg1))),

199 send(Menu, send_method, send_method(selection, vector(font),

200 block(assign(new(F, var(font)), @arg1),

201 message(Menu, send_class, selection,

202 ?(Menu?members, find,

203 and(@arg1?value?family == F?family,

204 @arg1?value?style == F?style)))))),

205 (member(Font, Fonts),

206 font_family_name(Font, Name),

207 send(Menu, append, new(I, menu_item(Font, @default, Name))),

208 send(I, font, Font),

209 fail

210 ; true

211).

212 font_family(A, Font:font) :->

213 "Update size menu and pass new font"::

214 get(A, member, dialog, Dialog),

215 get(Dialog, member, size, SizeMenu),

216 get(SizeMenu?selection, points, Size), % current size

217 new(NewFont, font(Font?family, Font?style, Size)),

218 send(SizeMenu, selection, NewFont),

219 send(A, client_attribute, font, NewFont).

3.6.3 Quit

For a secondary window like this attribute editor, it might be a useful idea not to destroy

the window if the user hits `quit', but just to unmap it from the display using `Frame

!show: @off'. In this case, it can be remapped on the display very quickly and when

the window has certain status information attached to it, this will be maintained. For the

case of this editor, this only concernes the coordinates of the window.

To control between actual destruction and just unmapping it, an optional boolean

argument has been attached. This approach has several advantages. If the caller wants to

descriminate, it can do so. For all cases where the caller does not want to discriminate,

we have one central place to change the default behaviour.

220 quit(A, ShowOff:[bool]) :->

221 (ShowOff == @on

222 -> send(A, show, @off)

75

223 ; send(A?editor, attribute_editor, @nil),

224 send(A, free)

225).

3.6.4 Client communication

!�ll items �lls and (de)activates all dialog items. The argument is a chain of shapes

(normally the selection of the canvas). If one of the elements of the selection has

the speci�ed attribute, it will be activated and the !selection of the menu will be set

accordingly.

If more than one object in the selection has some attribute, the!selection of the item

will be the attribute value of the �rst object in the chain that is has the attibute. This is

a rather simple way of handling this case, but what else can we do?

226 fill_items(A, Client) :->

227 "Fill the dialog items from chain of shapes"::

228 get(A, member, dialog, Dialog),

229 attribute(Label, Selector),

230 get(Dialog, member, Label, Menu),

231 (get(Client, find,

232 message(@arg1, has_attribute, Selector), Proto),

233 get(Proto, attribute, Selector, Value)

234 -> send(Menu, active, @on),

235 send(Menu, selection, Value)

236 ; send(Menu, active, @off)

237),

238 fail ; true.

Set the chain of shapes for which we are editing the attributes. Note that if the window

is not shown, we won't update the contents.

239 client(A, Client:chain*) :->

240 "Set the graphical I'm editing"::

241 (get(A, show, @on)

242 -> get(A, member, dialog, Dialog),

243 (Client == @nil

244 -> send(Dialog?graphicals, for_some,

245 message(@arg1, active, @off))

246 ; send(A, fill_items, Client)

247),

248 send(A, slot, client, Client)

249 ; true

250).

Set the value of an attribute for the clients. The value is set for each shape that accepts

!has attribute.

76

251 client_attribute(A, Selector:name, Val:any) :->

252 "Set attribute of client object"::

253 (get(A, client, Chain), Chain \== @nil

254 -> send(A?client, for_all,

255 if(message(@arg1, has_attribute, Selector),

256 message(@arg1, attribute, Selector, Val)))

257 ; true

258).

259 :- pce_end_class.

77

Chapter 4

Conclusions

In this document we presented a medium-sized application to illustrate how applications

can be designed and realised using PCE. We have tried to make the design process and

design decissions explicit. No doubth it is possible critise the code and decissions made.

Nevertheless, we hope the sources of PceDraw form a valuable starting point for program-

ming in PCE/Prolog.

The drawing tool presented in this document may be used as such. It should be noted

however that the functionality is incomplete. Notably editing prototypes is limited.

78

Appendix A

Programming Style

As O'Keefe argues in \The craft of Prolog" [OKeefe, 1990], using a `good' programming

style is not something optional. PCE/Prolog as presented in this document is de�nitely

something di�erent then Prolog with some additional library predicates. PceDraw as

presented here is an example of what we currently believe to be good programming style.

A.1 Organisation of source�les

The PCE class compiler allows for the de�nition of multiple classes in one �le. Quintus

Prolog compatible Prolog systems allow a �le represent at most one Prolog module. What

is the best way to organise your sources? There seem to be two reasonable solutions.

Each �le either represents a Prolog module and one PCE class, or a bundle of Prolog

predicates. Files of the �rst type generally do not export any predicates. All communica-

tion is done by sending messages to instances of the class de�ned in the �le. Files de�ning

normal Prolog predicates do have an export list (otherwise we can't reach their contents).

These predicates can be imported as usual.

The second possibility is to de�ne (small) classes that belong to each other or the same

category in the same �le (and module). Internally, these classes may communicate both

using Prolog calls and by sending messages.

A.2 Organisation of a class de�nition

Below is a list of the various sections that make up a class de�nition. Except for the header

and footer, all the sections are optional. Technically (currently) no ordering between the

other sections is required. For clarity it is adviced to use a standard schema for all your

classes.

� Header

This is just the :- pce_begin_class(Class, Super). declaration.

� Instance variable declarations

The variable/[3-4] declarations for additional instance variables.

� X-resource declarations

The resource/[3-4] declarations that provide access to the X-resource database.

79

All aspects that are arbitrary default choices of the UI style should be declared via

resources. This enhances clarity of the choices and allows the user to tailor the UI.

� Handle declarations

The handle/4 declaration to create handles for connections.

� Initialisation method

The initialisation method of a class normally comes �rst. It is invoked by the PCE

vitual machine (VM) operation new() that creates an instance. Messages and pred-

icates that only support the initialisation method (if it is very complicated; long

initialisation methods can often be found for dialog windows) are de�ned right be-

low the method.

� Unlink method

The unlink method is invoked from the PCE VM operation that destroyes an in-

stance. It is normally declared right after the initialisation method.

� Other reserved methods

PCE's internals call various other methods that may be rede�ned. Examples are

`Graphical !geometry', `Graphical !event' and `Gesture !initiate'. These are

normally declared before the other methods.

� Public functionality

With this, we refer to methods that facilate the communication with other parts of

the application.

� Local utilities

Methods and Prolog predicates that are used from various places within this class

de�nition are placed at the bottom. The reason for this is that one is usually not

interrested in these things.

� Footer

The :- pce_end_class. declaration terminates the declaration of the class.

Section A.2.1 provides a template for the class declaration.

A.2.1 Class de�nition template

Italic words indicate text that should be �lled in by the user. `...' denotes \more of these".

1 \tt\obeyspaces

2 :- pce_begin_class(\F{Class}(...\F{TermDescriptionArguments}...), \F{Super},

3 "\F{Documentation}").

4

5 variable(\F{Name}, \F{Type}, \F{Access}, "\F{Documentation}").

6 ...

7

8 resource(\F{Name}, \F{Type}, \F{Default}, "\F{Documentation}").

9 ...

10

11 handle(\F{X_FORMULA}, \F{Y_FORMULA}, \F{Kind}, \F{Name}).

12 ...

13

80

14 /********************************

15 * CREATE/UNLINK *

16 ********************************/

17

18 initialise(\F{Self}, ...\F{Arg}:\F{Type}...) :->

19 "Initialise from \F{Arguments}"::

20 \F{CheckArguments},

21 send(\F{Self}, send_super, initialise, ...\F{SuperInitArgs}...),

22 \F{SpecificInitialisation}.

23

24 unlink(\F{Self}) :->

25 "\F{Documentation}"::

26 \F{SpecificUnlink},

27 send(Self, send_super, unlink).

28

29 /********************************

30 * RESERVED METHODS *

31 ********************************/

32

33 event(\F{Self}, Ev:event) :->

34 "\F{Documentation}"::

35 (send(\F{Recogniser}, event, Ev)

36 -> true

37 ; send(\F{Self}, send_super, event, Ev)

38).

39

40 ...

41

42 /********************************

43 * PUBLIC METHODS *

44 ********************************/

45

46 \F{Sendmethod}(\F{Self}, ...\F{Arg}:\F{Type}...) :->

47 "\F{Documentation}"::

48 \F{Implementation}.

49

50 \F{Getmethod}(\F{Self}, ...\F{Arg}:\F{Type}..., \F{Result}) :<-

51 "\F{Documentation}"::

52 \F{Implementation}.

53

54

55 /********************************

56 * UTILITIES *

57 ********************************/

58

59 \F{Methods}.

60 ...

61 \F{Prologpredicates}.

62 ...

63

64 :- pce_end_class.

81

A.3 Choosing names

Apart from the Prolog predicates and variables for which any Prolog oriented naming

schema applies, various other objects have to be named while using PCE/Prolog. Names

for PCE objects have either global scope or local scope to the class they are associated

with. Names for classes and global objects are global. Names for selectors, variables and

resource are local to their class. For all these names, the following should apply:

� Names with global scope over the entire process should be short when they denote

some very basic concept of the application. Otherwise they are best pre�xed with

some indication of the category they belong to (e.g. draw_ for all global names

related to PceDraw).

� Names with local scope (selectors, variables and resources) have meaningful names.

In general they should not be abbreviations. When they denote a general operation,

they should be named to this operation (e.g. `quit', `relate'). When they denote

something very speci�c, something that can be used only under some non-frequently

occuring situation, they should have long names.

A.4 Predicates or methods?

When writing in PCE/Prolog, there is usually the choice between writing a method and

invoking this using send[2-12] or get/[3-13] or writing Prolog predicates and calling these

directly. When using user-de�ned classes as the basis for structuring an application, the

following rules apply:

� Communication between classes de�ned in di�erent source-�les is always using mes-

sages. This way the overall structure of the application is based upton one mecha-

nism.

� Within one source�le Prolog based activation/calling may be used. This however

should be limited to cases where:

1. Data that is not easily converted to PCE data is to be passed as arguments.

2. Prolog backtracking should be exploited.

3. Communication is very time critical.

4. It implies a private unitily.

A.5 Method arguments

Arguments to methods are determined by there location in the argument vector. PCE

distinguishes between obligatory and optional arguments (i.e. arguments that may be

@default). To avoid having to look in the manual continuously it is necessary to de�ne

some standards for argument ordering. The rules used inside PCE have never been stated

explicitely and compatibility considerations sometimes leaded to non-intuitive arguments.

Below is an attempt to make them explicit.

82

� Do not use too many obligatory arguments. If possible try to limit the number of

obligatory arguments to 1 or 2. `Name' or similar arguments in general come �rst.

`Values' (e.g. `dialog item

!

selection') come second. If there is a sensible default or

the user might not want to specify the value because it will be �lled in later, make

the argument optional. Example: initialising a line does not require any arguments.

Start and end-points default to (0,0). This is useful as (notably for de�ning links),

it is not unlikely the user wishes to create a line and de�ne the start and end-point

later.

� De�ne sensible defaults the optional and order them in decreasing `likelyness' the

user might wish to overrule the default.

A.6 Layout conventions

The considerations for layout of PCE/Prolog programs do not di�er very much from those

for ordinary Prolog programs. PCE/Prolog programs tend to use deeply nested complex

terms, notably while specifying message objects. The normal rules for breaking long terms

apply.

83

Bibliography

[OKeefe, 1990] R. A. OKeefe. The Craft of Prolog. MIT Press,

Massachussetts, 1990.

[Wielemaker & Anjewierden, 1992a] J. Wielemaker and A. Anjewierden. PCE-4 Func-

tional Overview. SWI, University of Amsterdam,

Roetersstraat 15, 1018WB Amsterdam, The Nether-

lands, 1992. E-mail: jan@swi.psy.uva.nl.

[Wielemaker & Anjewierden, 1992b] J. Wielemaker and A. Anjewierden. Programming

in PCE/Prolog. SWI, University of Amsterdam,

Roetersstraat 15, 1018WB Amsterdam, The Nether-

lands, 1992. E-mail: jan@swi.psy.uva.nl.

[Wielemaker, 1992] J. Wielemaker. PCE-4 User De�ned Classes Man-

ual. SWI, University of Amsterdam, Roetersstraat

15, 1018 WB Amsterdam, The Netherlands, 1992.

E-mail: jan@swi.psy.uva.nl.

84

Index

@arg1, 9, 17, 20, 27{30, 33, 42, 43, 55{57,

60{62, 66, 68, 72{77

@arg2, 9, 75

@black image, 71, 72

@block, 74, 85

@default, 17{20, 32, 42, 43, 47, 61, 62,

64, 65, 68, 71, 72, 75, 82

@display, 21{23, 31, 32, 64, 65, 71, 85

@draw bitmap recogniser, 41, 45

@draw canvas recogniser, 25

@draw compound draw text recogniser,

45, 54

@draw compound recogniser, 42, 45

@draw connect gesture, 45, 46

@draw connection recogniser, 41, 45

@draw create line gesture, 25, 45

@draw create path gesture, 25, 45

@draw create proto recogniser, 25, 48

@draw create resize gesture, 25, 45

@draw create text recogniser, 25, 54

@draw edit path gesture, 46, 53

@draw edit text recogniser, 45, 54

@draw line recogniser, 39, 45

@draw move outline gesture, 45, 46

@draw path recogniser, 40, 46

@draw resizable shape recogniser, 37, 38,

45

@draw resize gesture, 45, 46

@draw shape popup gesture, 45, 46, 61

@draw shape select recogniser, 45, 46

@draw text recogniser, 39, 45

@draw warp select gesture, 25, 45

@event, 26, 46, 48, 53, 54, 61, 68

@�nder, 14, 15, 32{34, 65

@fonts, 74

@grey12 image, 71

@grey25 image, 71

@grey50 image, 71, 72

@grey75 image, 71

@icon recogniser, 68

@mark handle image, 59

@mark image, 20

@menu proto box, 72

@nil, 16, 18, 20, 25{27, 31{36, 39, 47, 49{

52, 54, 56{58, 60, 62, 65{67, 71,

72, 75{77

@o�, 10, 20, 22, 25, 30{33, 39, 64{66, 70,

73, 75, 76

@on, 15, 16, 18{20, 22, 26, 29{33, 36, 38,

39, 55, 57, 62, 64, 65, 68, 71{73,

75, 76

@pce, 14, 16, 34, 74, 85

@prolog, 9, 30

@receiver, 53, 54, 72{75

@same center, 5

@swi, 14, 21, 24, 36, 44, 63, 69

@white image, 71

@block

 font, 74

!font, 74

@display

 depth, 71

@pce

 exception handlers, 14

 instance, 74

abs/2, 49

add extension/3, 15

asserta/1, 10

attribute.pl, 68

attribute/3, 36

auto adjust/3, 29

auto align/3, 29

canvas.pl, 44, 65

chain

 �nd, 60

85

!for all, 27, 28, 74

class

!handle, 37

clean duplicate connections/2, 30

clean duplicates/1, 30

colour, 71

colour/1, 71

colour display/0, 71

connect gesture

!connect, 58

default/3, 70

default printer/1, 34

device

 graphicals, 54

!advance, 39

!display, 54

!for all, 68

dialog

!append, 17

!layout, 17

dialog item

!

selection, 83

!auto label align, 73

display

 inspect handlers, 27

draw, 15

 canvas, 20

 dialog, 20

 menu, 21

!about, 21

!feedback, 21

!help, 22

!initialise, 16

!mode, 21

!proto, 21

!quit, 22

draw.pl, 32

draw/0, 15

draw/1, 15

draw attribute editor, 69

 client, 69

 editor, 69

!client attribute, 77

!client, 76

!�ll items, 76

!font family, 75

!initialise, 70

!quit, 75

draw bitmap, 41

 attribute, 41

!attribute, 41

!event, 41

!has attribute, 41

draw box, 37

 attribute, 37

!attribute, 37

!event, 37

!geometry, 37

!has attribute, 37

draw canvas, 24

!

attribute editor, 25

!

auto align mode, 25

!

proto, 24

 default ps�le, 34

 �le, 24

 mode, 24

 modi�ed, 25

 proto, 48

!align graphical, 29

!align selection, 28

!align with selection, 28

!auto align, 29

!clear, 31

!cut selection, 28

!duplicate selection, 30

!edit selection, 31

!edit, 28

!expose selection, 28

!�le, 33

!generate postscript, 34

!hide selection, 28

!import frame, 27

!import image, 27

!import, 33

!initialise, 25

!load from, 33

!load, 33

!mode, 35

!modi�ed, 26

!postscript as, 34

!postscript, 34

86

!print, 34

!save as, 32

!save, 32

!selection, 26, 47

!toggle select, 26

!unlink, 26

!update attribute editor, 31

draw change line gesture, 50

!

side, 50

!drag, 50

!initiate, 50

!terminate, 51

!verify, 50

draw compound, 42

 attribute, 43

!attribute, 43

!event, 42

!geometry, 42

!has attribute, 43

!start text, 43

!string, 42

draw connect create gesture, 59

 from indicator, 59

 handle, 61

 line, 59

 to indicator, 59

 to, 59

!drag, 60

!indicate, 61

!initialise, 59

!initiate, 59

!terminate, 60

!verify, 59

draw connect gesture, 58

!verify, 58

draw connection, 41

 attribute, 41

!attribute, 41

!event, 41

!has attribute, 41

draw create line gesture, 50

!drag, 50

!terminate, 50

!verify, 50

draw create path gesture, 51

!

path, 51

 line, 51

!event, 51

!initialise, 51

!initiate, 52

!move, 52

!terminate path, 52

!terminate, 52

draw create resize gesture, 48

!

object, 48

!drag, 49

!initiate, 48

!terminate, 49

!verify, 48

draw draw shape popup gesture, 62

!

old selected, 62

!initiate, 62

!terminate, 62

!verify, 62

draw ellipse, 37

 attribute, 38

!attribute, 38

!event, 38

!geometry, 38

!has attribute, 38

draw icon, 66

!

mode cursor, 66

!

mode, 66

 proto, 66

!activate, 68

!attribute, 68

!can delete, 66

!event, 68

!has attribute, 68

!initialise, 66

!paint outline, 67

!paint proto, 67

!proto, 67

draw line, 39

 attribute, 40

!attribute, 40

!event, 39

!geometry, 39

!has attribute, 40

draw menu, 63

!

�le, 63

 current, 64

87

 modi�ed, 63

!activate select, 64

!can delete, 65

!create proto, 64

!delete, 65

!initialise, 64

!load from, 65

!load, 65

!modi�ed, 64

!proto, 20, 64

!save as, 65

!save, 65

draw modify path gesture, 53

!

point, 53

!drag, 53

!initiate, 53

!verify, 53

draw move gesture, 58

!terminate, 58

draw move selection gesture, 55

!

selection, 55

 origin, 55

 outline, 55

!drag, 56

!initialise, 55

!initiate, 55

!terminate, 56

!verify, 55

draw path, 40

 attribute, 40

 interpolation, 40

!attribute, 40

!event, 40

!geometry, 40

!has attribute, 40

!interpolation, 40

draw resize gesture, 58

!terminate, 58

draw resize selection gesture, 56

!

selection, 56

 outline, 56

 start, 56

!drag, 57

!initialise, 56

!initiate, 57

!terminate, 57

!verify, 57

draw text, 38

 attribute, 39

!attribute, 39

!event, 38

!geometry, 39

!has attribute, 39

!initialise, 38

draw warp select gesture, 47

 outline, 47

!drag, 47

!initialise, 47

!initiate, 47

!terminate, 47

!verify, 47

event

!post, 37

event/2, 39

�le

 object, 7, 33

�ll dialog/1, 16, 17, 70

�ll menu/1, 20

�nd �le.pl, 14, 32

font family name/2, 74

frame

!

done message, 70

 member, 11

!show, 30, 32, 75

geometry/5, 36

gesture

!drag, 60

!initiate, 47, 80

!verify, 47

gesture.pl, 25, 35, 42

get/[3-13], 8, 9, 16, 82

graphical

 frame, 11

!area, 42

!event, 25, 44, 80

!geometry, 42, 80

!handle, 37

!inverted, 68

!set, 42, 47

!x, 42

88

handle/4, 37, 80

image

 convert, 27

keyboard accelerators, 6

library directory/1, 22

make closed menu/1, 73

make colour menu/1, 72

make coordinate menu/2, 73

make create proto recogniser/1, 48

make draw compound draw text recogniser/1,

54

make draw create text recogniser/1, 54

make draw edit path gesture/1, 53

make draw edit text recogniser/1, 54

make draw shape popup gesture/1, 61

make draw shape select recogniser/1, 46

make �ll pattern menu/1, 71

make font family menu/1, 75

make font size menu/1, 74

make interpolation menu/1, 73

make line menu/3, 71

make proto menu/4, 71, 72

make radius menu/1, 73

make transparent menu/1, 72

manpce/[0-1], 7

menu.pl, 20, 42

menu item

!

value, 72

 default label, 17

modi�ed/1, 36

new/2, 8{10, 16, 17

object

 clone, 24, 29, 30

 klone, 9

!done, 29, 67

!free, 26

!recogniser, 25, 44

!save in �le, 7, 9, 31

!save, 32

!send method, 9

!unlink, 26

path

 point, 53

pce autoload/2, 14

pce begin class/3, 10

pce end class/0, 10

pce global/2, 14, 25, 32, 44

require/1, 14

resize factor/4, 42

resource/3, 46

resource/4, 15

resource/[3-4], 79

send/[2-12], 8, 9, 16

shape

!event, 12, 44

shape.pl, 68

shapes.pl, 25

temp �le/1, 34

term expansion/2, 9, 10

text item

!type, 27

unique handle name/2, 61

variable/4, 10

variable/[3-4], 79

window

!focus, 52

x resize/4, 57

y resize/4, 58

89

