
XPCE-5.0 Release Notes

Jan Wielemaker

SWI
University of Amsterdam

Roetersstraat 15
1018 WB Amsterdam

E-mail: jan@swi.psy.uva.nl

January 1999

This document provides an overview of new functionality of XPCE-5. The highlights are
single-file executables using embedded (image) resources, passing native Prolog data through
arguments of Prolog-defined methods and the introduction of graphical tables.

University of Amsterdam
Dept. of Social Science Informatics (SWI)
Roetersstraat 15, 1018 WB Amsterdam
The Netherlands
Tel. (+31) 20 5256786

XPCE–5.0 Release Notes

Jan Wielemaker
jan@swi.psy.uva.nl

XPCE/Prolog is a hybrid environment integrating logic programming and object-oriented programming
for Graphical User Interfaces. Applications in XPCE/Prolog are fully compatible across the supported
X11 and Win32 (Windows 95, 98 and Windows NT) platforms.

Last updated January 18, 1998 for XPCE version 5.0

Copyright c 1992-1998 University of Amsterdam

CONTENTS

1 Overview 1

2 Changes to Message Passing 2
2.1 Allow for Prolog-native data . 2

2.1.1 Example — Creating a tree from Prolog data . 2
2.2 The predicates send/2 and get/3 . 4
2.3 Invoking behaviour on the super-class . 5
2.4 Variable-argument methods . 5

3 Class-variables 7
3.1 Consequences for the application programmer . 7

3.1.1 The ’compatibility/resource’ library . 7
3.2 Consequences for the end-user . 8

4 Program resources 9

5 Errors and Prolog exceptions 11

6 Modified and deleted features 12
6.1 Constraints — only automatic for graphicals . 12
6.2 Debugging and goal-stack examination . 12
6.3 Edit interface . 12

7 Layout Managers 14
7.1 Graphical tables . 14
7.2 Example — Show contents of a directory in a table . 14

8 Reference pages 19
8.1 Interface predicates . 19

8.1.1 Alternative interface predicates . 20

9 Status, discussion and plans 22
9.1 Prolog interface . 22
9.2 Tables . 22

A Migrating old source code 23

Release Notes XPCE 5.0

1: OVERVIEW

XPCE-5.0 is the first major release since the introduction of user-defined classes. We have decided to name
it such because the relation between the hosting Prolog system and XPCE has been changed radically,
important features for the generation of stand-alone executables have been added, as well as a powerful
table class for manipulating tabular layout of graphical objects.

The new host message-passing protocol is not only faster and uses less memory, it also allows passing
native host (Prolog) data over XPCE-methods. In addition, a transparent protocol for representing native
(recorded) Prolog data in XPCE instance-variables has been added. These features facilitate proper design
of XPCE/Prolog programs with far less hassle. Defining graphical applications using XPCE classes de-
fined in Prolog is the accepted preferred mechanism for structuring large GUI applications. Unfortunately
however, as XPCE methods, even when defined in Prolog, only accepted XPCE data, either the native Pro-
log data had to be represented in XPCE data or a predicate instead of a method-invocation must be used.
Chapter 2.1.1 provides an example of passing native Prolog data.

Graphical applications often require images, help-files and other data that is not easily expressed in Prolog
source-code. XPCE-5.0 provides a generic mechanism for associating this data with the application. See
chapter 4.

Tables are a common and well understood mechanism for defining 2-dimensional layout. XPCE-5.0 pro-
vides tables modelled after HTML-3, including row and column-spanning, defining rules and frames, spac-
ing and manipulation mechanisms such as naming columns and rows, deleting, inserting and sorting rows,
etc. See chapter 7.

Release Notes XPCE 5.0

2: CHANGES TO MESSAGE
PASSING

2.1: Allow for Prolog-native data

In earlier versions, sending a message was realised by resolving the implementation, and activating it.
In the new version a goal is created, after which actions on this goal resolve the implementation and its
type-vector, type-check and allocate the arguments and finally execute the implementation. The advantage
of this is two-fold. First of all, it allows the host-interface to check whether the implementation called is
actually defined in the host-language itself. In this case the interface can decide not to route the call through
XPCE, but instead build the proper argument vector an call the implementation directly. This is faster and,
at least equally important, it avoids the requirement to represent all data passed over a XPCE method,
even when implemented in the host to be converted into XPCE data. Second, the new implementation
technique results in a much flatter and smaller C-stack. Not only this saves a considerable amount of
memory in deeply nested method-invocation, but it also reduces the amount of stack-faults on processors
using register-windows (e.g. SPARC)

To improve the Prolog integration even further, the class prolog term and type prolog have been intro-
duced. When invoking Prolog-defined methods, the type prolog indicates the interface that the Prolog
argument should be passed directly to the implementation. If a XPCE-native argument is defined to be of
type prolog, the Prolog term-reference is packed into an instance of the class prolog term. If the context in
which a prolog term object was created terminates and the object has references, the interface will record
the term into the Prolog database.

This approach results in natural behaviour. If a Prolog term is passed over methods that allow for it and
reaches Prolog at some stage, Prolog receives the unmodified term. If the Prolog term is associated with a
XPCE object, normally as data for an instance-variable, the instance-variable will contain a recorded copy
of the term. If Prolog requests the value of this term, the term is copied back to the Prolog stacks (cf.
recorded/3).

2.1.1: Example — Creating a tree from Prolog data

Suppose a tree is represented in Prolog using the term node(Value, Sons), where Sons itself is a tree and
Value is an arbitrary Prolog term. We would like to represent this tree using a XPCE tree object. If a node
is selected, the associated term is displayed.

Class parse tree Defines the tree object itself. It defines the global visual characteristics of the tree. The
hierarchy is represented by node objects. The root and all underlying nodes are created directly from the
Prolog term that represents the hierarchy in Prolog.

Finally, an event-handler is associated with all nodes that invokes clicked on the node after a left-mouse-
button single click has been recognised.

1 :- pce_begi n_c la ss(pars e_t re e, tree).

2 initialis e(T, Tree:prol og) :->
3 send(T, send_super , initialise , parse_node (T ree)) ,
4 send(T, direction, list),

XPCE 5.0 Release Notes

2.1: Allow for Prolog-native data 3

5 send(T, level_gap, 20),
6 send(T, node_handl er ,
7 click_ge st ure (l eft , ’’, single,
8 message(@event?r ec ei ver ?node, clicked))) .

9 :- pce_end_ cla ss .

Class parse tree contains the magic. Unlike XPCE version 4, version 5 can built trees bottom-up, i.e.
first creating the leaves of the tree and gradually relating the leaves using nodes higher in the hierarchy.
Finally the whole hierarchy is associated to a tree object.

10 :- pce_begi n_c la ss(pars e_node, node).

11 variable(va lue , prolog, get, "Associat ed value").

12 initialis e(N, Tree:prol og) :->
13 Tree = node(Val ue, Sons),
14 send(N, send_super , initialise , new(text)) ,
15 send(N, value, Value),
16 (Sons == []
17 -> send(N, collapse d, @nil) % do not show [+] mark
18 ; forall(me mber(Son, Sons),
19 send(N, son, parse_no de(Son)))
20).

Set the associated value, as well as the label. Value is stored in the value instance-variable of type
prolog. With the return of the slot message, the scope in which Value is passed to XPCE ends, and
Value is thus recorded into the Prolog database. Later destruction of the prolog term object automatically

frees the Prolog record.

Note that the label still needs to be translated to a type acceptable to XPCE. Passing the term directly forces
the string to convert the argument to XPCE native data.

21 value(N, Value:prol og) :->
22 " Set value and change label"::
23 send(N, slot, value, Value),
24 term_to_ ato m(Value , Label),
25 send(N?i mage, string, Label).

Get the associated term, which is retrieved from the Prolog recorded database.

26 clicked(N) :->
27 get(N, value, Value),
28 format(’ User clicked "˜p"˜n’, [Value]).

29 :- pce_end_ cla ss .

Finally, we define a Prolog tree and a the code to visualise it in a window.

30 tree(node (s ent ence,
31 [node(subj ec t(p ce), []),
32 node(verb (i s), []),
33 node(adje ct ive (n ice), [])
34])).

35 show_tree :-
36 tree(Tre e),
37 new(P, picture(’Pa rs e Tree’)),
38 send(P, display, parse_tr ee(Tr ee), point(10, 10)),
39 send(P, open).

Release Notes XPCE 5.0

4 2: Changes to Message Passing

Figure 2.1: Resulting window for ?- showtree.

2.2: The predicates send/2 and get/3

XPCE now supports two formats for the send- and get-predicates. The principle format has been changed
to:

send(Receiver, Selector(...Arg...))
get(Receiver, Selector(...Arg...), Answer)

For example:

?- send(new(P, picture), open),
send(P, display(box(100,100), point(10,10))).

Advantages of this representation are:

No limits to the number of arguments.

Generally easier specification of utility-predicates that wrap around the XPCE primitives as messages
are represented using single Prolog term.

Possibility to define (efficiently) other syntaxes for XPCE.1

As a disadvantage, XPCE produces more Prolog garbage, but using modern compilers, this is unlikely to
be a problem.

The old syntax is still acceptable. When appearing as a normal subclause, the XPCE term-expansion
will automatically rewrite it. Actual calls are modified at runtime.

1Using an infix-operator for send/2, we could express send using Receiver op Message. Unfortunately it is not easy to find a good
operator. -> is already reserved, . (dot) creates too much confusion with the final dot of a Prolog clause (a space after it would make
the parser think the clause has ended). Suggestions are welcome!

XPCE 5.0 Release Notes

2.3: Invoking behaviour on the super-class 5

2.3: Invoking behaviour on the super-class

Invoking behaviour on the super-class is implemented completely different. In the old system, send(Object,
send super, selector, ...) was used. In the new system, the primitive send class/2 is used and application
programmers use send super/2 with the same syntax as send/2.

The construct send super/2 is translated by the XPCE term-expansion module into a proper send class/2
message. All variations are recognised:

send(Receiver, send super, Selector, ...)
send(Receiver, send super(Selector, ...))
send super(Receiver, Selector, ...)
send super(Receiver, Selector(...))

Some incompatibilities arise from this: dynamically built invocations of the old send-super construct
will fail, as will calls outside the context of a class. If the message invoked from the super-class is deter-
mined dynamically, the code below should be used, i.e. the message should be constructed dynamically,
not the goal.

...,
Msg =.. [Selector|Arguments],
send_super(Receiver, Msg),
...,

2.4: Variable-argument methods

XPCE methods dealing with variable-argument parameter lists use different passing rules. Instead of pass-
ing the arguments packed in a vector object, they are now passed as a Prolog list.

The example below redefines ‘label report’ to change the colour of the text according to the nature of
the message:

:- pce_begin_class(reporter, label).

initialise(R) :->
send_super(R, initialise, reporter, ’’).

report(R, Kind:name, Fmt:name, Args:any ...) :->
colour(Kind, Colour),
send(R, colour, Colour),
Msg =.. [report, Kind, Fmt | Args],
send_super(R, Msg).

colour(status, green).
colour(error, red).
colour(_, black).

:- pce_end_class.

Release Notes XPCE 5.0

6 2: Changes to Message Passing

These incompatibilities are generally easily found by scanning the source for There is no auto-
matic rewrite feasible.

XPCE 5.0 Release Notes

3: CLASS-VARIABLES

The XPCE-4 notion of resources, expressing user-defaults, has been replaced by the notion of
class-variables, the default of which can be read from the XPCE Defaults -file and/or the user’s
$HOME/.xpce/Defaults file.

The notion ‘resource’ is now reserved for ‘program resources’, data required by the program that cannot
(easily) be expressed in the program itself. See chapter 4.

3.1: Consequences for the application programmer

For the application-programmer, the class-expression

resource(Name, Type, String-ified-default [, Comment]).

is replaced by

class variable(Name, Type, Default [, Comment]).

Please note that the default is no longer the string-ified version of the value, but the value itself.

The method ‘object resource value’ has been replaced by ‘object class variable value’. In addi-
tion, class variables provide normal get-behaviour, scheduled after methods and instance-variables, and the
value of a class-variable can thus be retrieved using a normal get-operation.

If both a instance- and a class-variable exist with the same name, the instance-variable is initialised to
@class default. On first access, the value of the class-variable is used to fill the instance-variable. The
code-fragment below illustrates this:

:- pce_begin_class(classvar_demo, object).

variable(count, int, get).
class_variable(count, int, 25).

...

show_count(CVD) :->
get(CVD, count, Count),
send(@display, inform, ’Count = %d’, Count).

3.1.1: The ’compatibility/resource’ library

The library(’compatibility/resourc e’) defines additional pre-processing and methods to deal
with commonly used programming constructs of the old resource mechanism.

This library reports class-variable (resource) values with incompatible syntax (string-ified) and can be used
to maintain source code that should run both on older versions as on XPCE-5.0. In the latter case, execute
the following directive in the context of the user module:

Release Notes XPCE 5.0

8 3: Class-variables

:- (get(@pce, version, number, Version),
Version >= 50000

-> use_module(library(’compatibility/resource ’))
; true
).

Please note that when using this library, resources as defined in chapter 4 cannot appear inside a class-
definition.

3.2: Consequences for the end-user

XPCE no longer uses the X11 resource-syntax. The syntax for a class-variable default value is defined as:

class . class-variable : value

Thus, the leading Pce. has been dropped and class-names are written in exact-case rather then capitalised.
The value-syntax has not been changed.

The system defaults-file is located in $PCEHOME/Defaults , where $PCEHOME refers to the XPCE
home-directory (see ‘@pce home’). The user’s defaults-file is located in $HOME/.xpce/Defaults ,
which is achieved using an include-statement at the end of the system-defaults file.

XPCE 5.0 Release Notes

4: PROGRAM RESOURCES

Resources, in the new sense of the word is data that is required by an application but cannot be expressed
easily as program-code. Examples are image-files, help-files, and other files using non-Prolog syntax. Such
files are declared by defining clauses for the predicate resource/3:

resource(?Name, ?Class, ?PathSpec)
Define the file specified by PathSpec to contain data for the resource named Name of resource-class
Class.

Name refers to the logical name of the resource, which is interpreted locally for a Prolog module.
Declarations in the module user are visible as defaults from all other modules. Class defines the type
of object to be expected in the file. Right now, they provide an additional name-space for resources.
PathSpec is a file specification as acceptable to absolute file name/[2,3].

Resources can be handled both from Prolog as for XPCE. From Prolog, this is achieved using
open resource/3:

open resource(+Name, ?Class, -Stream)
Opens the resource specified by Name and Class. If the latter is a variable, it will be unified to the
class of the first resource found that has the specified Name. If successful, Stream becomes a handle
to a binary input stream, providing access to the content of the resource.

The predicate open resource/3 first checks resource/3. If successful it will open the returned re-
source source-file. Otherwise it will look in the programs resource database. When creating a saved-
state, the system saves the resource contents into the resource archive, but does not save the resource
clauses.

This way, the development environment uses the files (and modifications to the resource/3 declara-
tions and/or files containing resource info thus immediately affect the running environment, while
the runtime system quickly accesses the system resources.

From XPCE, resources are accessed using the class resource, which is located next to file below the
common data-representation class source sink. Many of the methods that require data accept instances of
source sink, making resources a suitable candidate.

Below is the preferred way to specify and use an icon.

resource(my_icon, image, image(’my_icon.xpm’)).

...,
send(Button, label, image(resource(my_icon))),
...,

The directive pce image directory/1 adds the provided directory to the search-path for images (repre-
sented in the class-variable image.path), as well as to the image/1 definition of file search path/2.

Please note that MS-Windows formatted image files can currently not be loaded through resource objects.
The Windows API only provides functions to extract these objects from a single file, or nested as Windows
resources in a .dll or .exe file.

Right now, it is adviced to translate the images into .xpm format using the following simple command:

Release Notes XPCE 5.0

10 4: Program resources

?- send(image(’myicon.ico’), save, ’myicon,xpm’, xpm).

This transformation is complete as the XPM image format covers all aspects of the Microsoft image for-
mats.

XPCE 5.0 Release Notes

5: ERRORS AND PROLOG
EXCEPTIONS

XPCE-5.0 provides a mapping between XPCE errors and Prolog exceptions. For this reason a new
‘error feedback’ has been defined: throw . If an error is raised using ‘object error’ that has

feedback: throw and the system finds a goal on the stack that indicates it is willing to catch errors,
the error details are stored in the goal. As control is returned to Prolog, the interface maps the error details
onto a Prolog exception. This exception is of the format:

error(pce(ErrorId, ListOfArguments), Context)

This error can be catched using the ISO catch/3 construct:

?- catch(send(@pce, not_implemented), E, true).

E = error(pce(no_behaviour,
[@pce/pce, (->), not_implemented]),

send(@pce/pce, not_implemented))

This error-term can be printed using print message/2. The method ‘error format’ may also be used to
map the error into a XPCE-string:

error_string(ErrorId, Args, TextAsAtom) :-
Msg =.. [format|Args],
get(error(ErrorId), Msg, String),
get(String, value, TextAsAtom).

The XPCE manual’s error browser can be used to examine the defined error types.

Release Notes XPCE 5.0

6: MODIFIED AND DELETED
FEATURES

6.1: Constraints — only automatic for graphicals

In practice, constraints are almost exclusively used to specify geometry relations between graphical ob-
jects. Until now, constraints were evaluated whenever a send-message was successfully executed. In 5.0,
constraints are executed automatically if the geometry of a graphical object changes. All other case should
be invoked manually using ‘object update constraints’.

If other objects are known to dependent using constraints on one or more attributes of a class, it is advised
to write a wrapper that invokes update constraints whenever the relevant attributes of the object are
modified.

For example, suppose a class lamp has been defined with a property ‘is on’. The application uses con-
straints to propagate the consequences of this property. The lamp should be defined according to the
skeleton below:

:- pce_begin_class(lamp, bitmap).

variable(is_on, bool := @off, get, "Whether the lamp is on/off").

is_on(L, OnOff:bool) :->
send(L, slot, is_on, OnOff),
send(L, update_constraints).

6.2: Debugging and goal-stack examination

The class vmi and its instances @vmi send, @vmi get, @vmi new and @vmi free are deleted. With
this, ‘vmi parent goal’, a method to validate some goal is executing higher in the goal-stack has been
deleted too. Applications using these constructs should take alternative measures.

The extensive debugger available in previous versions proved of little practical usage. As of version 5.0,
the debugger is limited to tracing the activation of methods and the access to instance-variables, as well as
breaking (like Prolog spy) on them. A break-point may be used to examine that status and stack-context
when a method is invoked.

The interface for setting break- and trace-point is the same, using spypce/1 and tracepce/1.

6.3: Edit interface

The predicate editpce/1 has been replaced by a hook into the generic edit/1 predicate. This hook provides
the following functionality:

XPCE 5.0 Release Notes

6.3: Edit interface 13

ClassOrObject -> Method
Specifies a send-method. Either Class or Method can be a variable.

ClassOrObject <- Method
Specifies a get-method. Either Class or Method can be a variable.

Class
In addition to the predefined objects, XPCE-classes of this name are returned.

Example:

?- edit(_->update).
Please select item to edit:

1 q_agenda->update boot(’inferui.pl’):455
2 toc_rule_node->update boot(’inferui.pl’):543
3 btext_item->update boot(’lib/bitem.pl’):41

Your choice?

Release Notes XPCE 5.0

7: LAYOUT MANAGERS

A Layout Manager is an object that is associated with a graphical device and which deals with managing
the layout of the graphicals displayed on the device. Layout-managers can either manipulate the graphicals
on the device directly, or it can attach a layout interface object to each the graphicals managed. The
layout interface object contains data required by the layout manager about the layout properties of the
graphical object.

In addition to managing the layout, layout managers can provide hooks to paint the background of a device,
as well as to direct events.

In the future, layout-managers will form a hierarchy with a role similar to the recogniser hierarchy. Cur-
rently the interface is only used by class table, using table cell as a refinement of layout interface.

7.1: Graphical tables

The most important graphical modification is the introduction of class table, defining graphical tables
modelled after HTML-3 tables. The relevant classes are listed in the partial class-hierarchy below:

object
layout_manager

table
layout_interface

table_cell
vector

table_slice
table_column
table_row

Figure 7.1: Location in the hierarchy of the table-classes

7.2: Example — Show contents of a directory in a table

1 :- module(s how_dire ct or y,
2 [show_dire ct ory /1
3]).
4 :- use_module(li bra ry (p ce)).

Define images we use as resources. See chapter 4 for details.

5 resource(di r, image, image(’16 x1 6/c lo sed ir .x pm’)) .
6 resource(doc, image, image(’16 x1 6/d oc .xp m’)) .
7 resource(pc e, image, image(’16 x1 6/p ce .xp m’)) .

The toplevel of this module simply creates an instance of the class dir listing and opens it.

XPCE 5.0 Release Notes

7.2: Example — Show contents of a directory in a table 15

8 show_dire ct ory (D) :-
9 send(new (di r_ li sti ng(D)), open).

10 :- pce_begi n_c la ss(di r_ lis ti ng, picture,
11 "Show contents of a director y") .

12 variable(di rec to ry, directory , get, "Current director y").
13 variable(so rt_ co lum n, name, get, "Name of column to sort on").

Change the ordinary picture window into a table. First, the table is associated using ‘device
layout manager’. Then the parameters of the table are filled. Note the similarity between the HTML-3

definition of terms and those used here.

14 initialis e(DL, Dir:dire cto ry) :->
15 send_sup er(DL, initialise),
16 send(DL, layout_ma nager , new(T, table)),
17 send(T, rules, groups),
18 send(T, frame, box),
19 send(T, border, 1),
20 (column(I, Name, Align, Label),
21 get(T, column, I, @on, Col), % @on: create
22 send(Col, halign, Align),
23 send(Col, name, Name),
24 send(T, append, Label),
25 fail
26 ; true
27),
28 send(T, next_row, @on), % @on: end group
29 send(DL, sort_colu mn, name),
30 send(DL, directory , Dir).

Definition of the columns. This is easier to read, write and maintain than long sequences of send-operation
in the initialise method above. The class sortable column label is defined further down this file.

31 % Index Name, Align, Label
32 column(1, image, center, new(grap hic al)) .
33 column(2, size, right, sortable _co lu mn_la bel(s iz e)).
34 column(3, modified, right, sortable _co lu mn_la bel(m odif ied)) .
35 column(4, name, left, sortable _co lu mn_la bel(n ame)).

36 clear(DL) :->
37 " Remove all entries, except for the title-row"::
38 get(DL, layout_man ager, Table),
39 send(Tab le, delete_r ows, 2).

40 sort_colu mn(DL , Col:name) :->
41 " Switch sort column and underline proper label"::
42 send(DL, slot, sort_colum n, Col),
43 get(DL, layout_man ager, Table),
44 new(Titl eCell , ?(@arg1, cell, 1)?image) ,
45 send(Tab le? co lu mns, for_all,
46 if(messa ge(Ti tl eCell , instance_o f, sortable_ co lum n_lab el),
47 if(TitleCe ll ?name == Col,
48 message(T itl eCel l, underline , @on),
49 message(T itl eCel l, underline , @off)))) .

50 sort(DL, On:[name]) :->
51 (On == @default
52 -> true
53 ; send(DL, sort_colum n, On)
54),
55 get(DL, layout_man ager, Table),

Release Notes XPCE 5.0

16 7: Layout Managers

56 send(Tab le, sort_row s, ?(DL, compare_ ro ws, @arg1, @arg2), 2).

57 compare_r ows(D L, R1:table_ ro w, R2:table_ row , Result) :<-
58 " Compare two rows on sort column"::
59 get(DL, sort_colum n, ColName),
60 get(R1, cell, ColName, C1),
61 get(R2, cell, ColName, C2),
62 get(C1, image, Gr1),
63 get(C2, image, Gr2),
64 get(Gr1, compare, Gr2, Result).

65 :- pce_grou p(e ve nt) .

66 :- pce_glob al(@dire co ry _li st ing _r ec ogn is er,
67 new(click _gest ure (l ef t, ’’, single,
68 message(@rece iv er, clicked,
69 ?(@receive r, current, @event))))).

70 current(D L, Event:eve nt , Current: ’f ile |d ire ct or y’) :<-
71 " Return pointed file/directory"::
72 get(DL, layout_man ager, Table),
73 get(Tabl e, cell_from _posi ti on, Event, Cell),
74 get(Cell , row, RowN),
75 get(Tabl e, row, RowN, Row),
76 get(Row, attribute , client, Current).

77 event(DL, Ev:event) :->
78 (send_supe r(DL, event(Ev))
79 ; send(@dir ec ory _l ist in g_rec ognis er , event, Ev)
80).

81 clicked(D L, Clicked:’ fi le| di rec to ry ’) :->
82 (send(Clic ke d, instance_ of, director y)
83 -> send(DL, directory, Clicked)
84 ; true
85).

86 :- pce_grou p(b ui ld) .

Build the contents of the table.

87 directory (D L, Dir:direc tor y) :->
88 send(DL, slot, directory, Dir),
89 send(DL, clear),
90 new(File s, chain),
91 new(Dirs , chain),
92 send(Dir , scan, Files, Dirs),
93 send(Dir s, for_all,
94 message(DL, append_d ir ect or y,
95 ?(Dir, directory, @arg1))) ,
96 send(Fil es, for_all,
97 message(DL, append_f il e,
98 ?(Dir, file, @arg1))),
99 send(DL, sort).

100 append_di re cto ry (DL , Dir:direct or y) :->
101 " Append a directory-row"::
102 get(DL, layout_man ager, Table),
103 get(Tabl e, row, Table?cur re nt? y, @on, Row),
104 send(Row , attribut e, client, Dir),
105 send(Tab le, append, bitmap(res ource (d ir))) ,
106 send(Tab le, append, dir_value_ te xt(0)),
107 send(Tab le, append, dir_value_ te xt(Di r? tim e)),

XPCE 5.0 Release Notes

7.2: Example — Show contents of a directory in a table 17

108 send(Tab le, append, dir_value_ te xt(Di r? name)),
109 send(Tab le, next_row).

110 append_fi le (DL , File:file) :->
111 " Append a directory-row"::
112 get(DL, layout_man ager, Table),
113 get(File , base_name, Name),
114 file_ima ge(Name, Image),
115 get(Tabl e, row, Table?cur re nt? y, @on, Row),
116 send(Row , attribut e, client, File),
117 send(Tab le, append, bitmap(Ima ge)),
118 send(Tab le, append, dir_value_ te xt(Fi le ?si ze)),
119 send(Tab le, append, dir_value_ te xt(Fi le ?ti me)),
120 send(Tab le, append, dir_value_ te xt(Name)),
121 send(Tab le, next_row).

122 file_type (’ *.p l’ , pce).
123 file_type (* , doc).

124 file_imag e(Fil e, image(res ource (R es Name))) :-
125 new(Re, regex),
126 file_typ e(P at te rn, ResName),
127 send(Re, file_patt er n, Pattern),
128 send(Re, match, File), !.

129 :- pce_end_ cla ss .

Class sortable column label provides the label displayed in the first (title) row. If the lable is clicked, it
will send a message to the window to sort the represented table on the named column.

130 :- pce_begi n_c la ss(so rt abl e_col umn_lab el , text).

131 initialis e(L, Name:name) :->
132 send_sup er(L, initialis e(Name?la bel _name, font := bold)),
133 send(L, name, Name).

134 :- pce_glob al(@sort able _co lu mn_la bel_r ec ogn is er ,
135 new(click _gest ure (l ef t, ’’, single,
136 message(@rece iv er, clicked)))) .

137 event(L, Ev:event) :->
138 (send(L, send_sup er, event, Ev)
139 ; send(@sor ta ble _c olu mn_l abe l_ rec ogni ser , event, Ev)
140).

141 clicked(L) :->
142 " Clicked. Send sort to the window"::
143 get(L, device, Window),
144 send(Win dow, sort, L?name).

145 :- pce_end_ cla ss .

Class dir value text is a simple subclass of class text, providing a generic compare method on the
represented value, thus keeping the code for sorting the table on a named column generic and simple.

146 :- pce_begi n_c la ss(di r_ val ue_te xt , text,
147 "Represen t a value, providin g <-compar e").

148 variable(va lue , any, get, "Represen ted value").

149 initialis e(C, Value:any) :->
150 send(C, slot, value, Value),
151 send_sup er(C, initialis e(Value ?prin t_ name)).

152 compare(N 1, N2:dir_va lu e_t ex t, Result) :<-
153 get(N1?v alu e, compare, N2?value, Result).

Release Notes XPCE 5.0

18 7: Layout Managers

154 :- pce_end_ cla ss .

Figure 7.2: Resulting window for ?- show directory(’.’).

XPCE 5.0 Release Notes

8: REFERENCE PAGES

Below is the reference documentation for the modified XPCE/Prolog interface. This material will shortly
be merged into “Programming in XPCE/Prolog”.

8.1: Interface predicates

In all definitions below, Message is either an atom or a compound term. The functor-name (or the atom) of
the message denotes the selector for the behaviour addressed. The arguments of a compound Message are
used to build the argument vector for the goal.

The following steps are executed when sending a message using any of these predicates:

1. Convert the Object argument into a reference to a XPCE object.

2. Extract the selector from the Message and resolve the implementation of the behaviour denoted by
the combination of the object and selector. This process can yield a new receiving object, either
due to function-evaluation if the receiving object is a function and behaviour is not defined on the
function itself, or due to delegation.

3. Determine a description (a vector of type objects) of the arguments required by the implementation.

4. Allocate and fill the actual argument vector. This process deals with named arguments (Name, Value
:= Name, Value, type-conversion as well as filling non-specified default arguments.

The interface here already discriminates between XPCE implemented behaviour from Prolog imple-
mented. In the first case the argument vector is an array of native XPCE data. If an argument accepts
Prolog native data, the argument is translated into an instance of class prolog term, providing a han-
dle to the Prolog term. In the second case, it creates a vector of Prolog term references for creating
the call to pce principal:send implementation/3 or pce principal:get implementation/4.

5. Execute the implementation by calling a XPCE interface function if the implementation is in XPCE,
or by calling the Prolog implementation directly.

6. If it concerns a get-operation, convert the return value to the proper type.

7. Discard all garbage object created in this process, except for the return-value of a get-operation.

send(+Object, :Message)
Send Message to the indicated Object. In general, a send-operation is intented to modify an object
or test the object for some property. This predicate either succeeds or fails if it concerns a test which
fails. If an error is encountered, the error is reported to the GUI or the terminal or mapped onto a
Prolog exception. See section 5 for details.

send class(+Object, +Class, :Message)
As send/2, but the implementation is resolved only considering methods defined at the level of the
specified Class or higher in the inheritence hierarchy.

This can be used in very special cases if one wants to force the usage of a particular implementation.
It is dangerous as assumptions made in classes between the actual object-class and Class may be
violated.

Release Notes XPCE 5.0

20 8: Reference pages

Normally, send super/2 should be used, which is mapped to a proper call of send class/3 by the
class-compiler.

send super(+Object, :Message)
This actually is not a predicate, but syntactic sugar translated by the XPCE class-compiler into an
appropriate send class/3 call. This construct can only appear in the context of a method-definition.
It is good practice that any method being refined in a sub-class invokes the implementation of its
super-class at some stage, as this guarantees no assuptions made in the super-class are violated. For
example, if a subclass of class device is defined to realise a specific graphical object, it must invoke
send super(Dev, initialise) in its refined initialise method before it displays any graphical object
on the device:

:- pce_begin_class(my_graphical, device).

initialise(MG) :->
send_super(MG, initialise),
send(MG, display(box(100, 50))),
...

get(+Object, :Message, -Answer)
Similar to send/2, but get-behaviour returns a value. The following cases require attention.

A fresh ‘attribute’ object is returned
For example, ‘box size’ returns and instance of class size, representing the current size of
the box object. This size object has no relation to its creator and may be modified freely. It
need not be discarded as the incremental garbage collector will deal with it if the object is not
protected using lock object or by associating it to another object.

An ‘attribute’ is returned
Unlike ‘box size’, ‘box area’ returns an instance of class area describing the area of
the box in the coordinate system of its device, but the area object returned is a filler for the
‘graphical area’ instance-variable of the box object. Modifying this area will leave the box
and its device in an inconsistent state.

A normal fresh object is returned
Some get-behaviour creates a new, completely independent instance ready and intended for
further manipulation. This case is from the programmers point of view no different from the
return of a ‘fresh’ attribute object.

A fully functional part is returned
If a device is, using ‘device member’, asked for the object-reference of a displayed graph-
ical object, the returned object may be modified freely as graphicals knon on what device they
are displayed and will inform this device of any relevant information, including the death of
the graphical. Whether or not such a relation exists can only be found in the documentation. In
general, if built-in objects are aware of each others existence, they will inform each other.

get class(+Object, +Class, :Message, -Answer)
The predicate get class/4 is what send class/3 is for get-behaviour.

get super(+Object, :Message, -Answer)
The predicate get super/3 is what send super/2 is for get-behaviour.

8.1.1: Alternative interface predicates

Both for compatibility reasons as because it will remain the preferred syntax for some users, the predicates
send/[3-12] and get/[4-13] are defined:

XPCE 5.0 Release Notes

8.1: Interface predicates 21

send(+Object, :Selector, ... +Arg ...)
Equivalent to send(Object, Selector(...Arg...)). The XPCE macro-expansion translates these calls to
send/2. The predicates are defined as well to deal with invocation through meta-predicates that is
not captured by the macro-expansion. The following two calls are fully identical:

send(Window, display(box(100, 50), point(10, 10))),
send(Window, display, box(100, 50, point(120, 10))).

Note however that the existence of send/2 makes the following valid code:

send_list(Window,
[border(1),

background(green),
display(box(100,100), point(10,10))

])

get(+Object, :Selector, ... +Arg ..., -Answer)
These predicates are handled as send/[3-12].

Release Notes XPCE 5.0

9: STATUS, DISCUSSION AND
PLANS

9.1: Prolog interface

XPCE-5.0.0 is primarily an evaluation release for the new XPCE/Prolog interface. Except for the issues
noted in these release notes (especially chapter A), old code is supposed to be fully compatible with the
new release. With this beta release we want to access this claim, as well as your opinion on the direction
chosen with the interface.

One issue is whether to allow Prolog data (prolog term) in more places by including them into type any.
This would make the association of Prolog data with XPCE objects without user-defined classes possible,
but it would harm compatibility and possibly make the intention of source-code less obvious. Consider:

?- new(Chain, chain(point(1, 2))).

If any accepts Prolog data, this will be a chain object holding a Prolog term. Translation into a point-object
will only take place at the moment a type is requested that does not accept prolog term. This implies
translation may take place multiple times, resulting in multiple point instances being created from the same
term.

Alternatively, it would be possible to define a class, say term, that is a normal subclass of class object and
contains a single slot holding the prolog term object, so a Prolog term can be stored in a chain using

?- new(Chain, chain(term(point(1, 2)))).

Conversion back to Prolog could be achieved automatically (as with the classes real and prolog term, or
by hand using a method ‘term value’. Comments?

9.2: Tables

Graphical tables have been tested quite extensively on a couple of applications now. The basic functionality
is stable, but both new functionality (scrolling column/row subregions, 3D look) and utility functions will
be added. Suggestions are welcome.

XPCE 5.0 Release Notes

A: MIGRATING OLD SOURCE
CODE

This section provides a brief overview of things to check when migrating existing code to XPCE-5.0.

Resources
If an application uses resources in user-defined classes, there are two options. One is to
load library(’compatibility/reso urce’), the other is to do a global replace of the term
resource into class variable . Values are represented using the normal object-notation.
The compatibility package will warn for possible problems. The advised route therefore it to
use the compatibility package first, fix the value-notation and finally replace resource with
class variable . See chapter 4.

Variable-argument methods
Argument are passed as a Prolog list, rather then a code vector instance. In general forwarding is im-
plemented by using Prolog univ (=../2) to create a message and then calling send/2 or send super/2.
Commonly, such constructs are found using grep for the pattern, possibly "... *) *:"
See chapter 2.4.

Send super
Send/Get super cannot be used outside the context of a class. The compiler will warn if it encounters
a send-super call for which it cannot resolve the context class. This problem has to be fixed manually.
See chapter 2.3.

Finally, if the generation of a runtime is desirable, it is advised to use the new-style resources to declare
and access your images and other program resources.

Release Notes XPCE 5.0

INDEX

’compatibility/resource’ library, 7, 23
@arg1, 15, 16
@class default, 7
@default, 15
@direcory listing recogniser, 16
@event, 3
@nil, 3
@off, 15
@on, 15–17
@receiver, 16, 17
@sortable column label recogniser, 17
@vmi free, 12
@vmi get, 12
@vmi new, 12
@vmi send, 12
@pce

home, 8
->/2, 13
<-/2, 13

absolute file name/[2
3], 9

area class, 20

box
area, 20
size, 20

catch/3, 11
code vector class, 23

device
member, 20
layout manager, 15

device class, 14, 20
dir listing, 15

compare rows, 16
current, 16
directory, 15
sort column, 15
append directory, 16
append file, 17
clear, 15
clicked, 16
directory, 16
event, 16
initialise, 15
sort column, 15
sort, 15

dir value text, 17
compare, 17
value, 17
initialise, 17

edit/1, 12
editpce/1, 12
error

feedback, 11
format, 11

file class, 9
file image/2, 17
file search path/2, 9

get/3, 4, 20
get/4-13, 21
get/[4-13], 20
get class/4, 20
get super/2, 20
get class/4, 20
get implementation/4, 19
get super/3, 20
graphical

area, 20
graphical class, 20

label
report, 5

lamp class, 12
layout interface class, 14

object
class variable value, 7
resource value, 7
error, 11
update constraints, 12

object class, 22
open resource/4, 9
open resource/3, 9

parse node, 3
value, 3
clicked, 3
initialise, 3
value, 3

parse tree, 2
initialise, 2

pce image directory/1, 9
print message/2, 11

XPCE 5.0 Release Notes

INDEX 25

prolog term class, 2, 19, 22

real class, 22
recorded/3, 2
resource class, 9
resource/3, 9

send/2, 4, 5, 19--21, 23
send/3-12, 21
send/[3-12], 20, 21
send class/3, 19
send super/2, 20
send class/2, 5
send class/3, 20
send implementation/3, 19
send super/2, 5, 20, 23
show directory/1, 15
show tree/0, 3
size class, 20
sortable column label, 17

clicked, 17
event, 17
initialise, 17

source sink class, 9
SPARC, 2
spypce/1, 12

table class, 1, 14
table cell class, 14
term

value, 22
term class, 22
tracepce/1, 12
tree class, 2
type class, 19

vector class, 5
vmi

parent goal, 12
vmi class, 12

Release Notes XPCE 5.0

