SWI-Prolog Did You Know Did you know? SWI-Prolog can be compiled to WASM to run in your browser Search Documentation:
Pack logtalk -- logtalk-3.90.1/examples/searching/NOTES.md

jupyter: jupytext: text_representation: extension: .md format_name: markdown format_version: '1.3' jupytext_version: 1.16.7 kernelspec: display_name: Logtalk language: logtalk name: logtalk_kernel ---

<!--

This file is part of Logtalk https://logtalk.org/ SPDX-FileCopyrightText: 1998-2025 Paulo Moura <pmoura@logtalk.org> SPDX-License-Identifier: Apache-2.0

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->

searching

Some code in this folder is adapted, with permission, from the book "Prolog Programming for Artificial Intelligence" by Ivan Bratko.

For a description of the search problems, please see a classical AI book (such as the one above) or visit http://www.plastelina.net/games.

This example defines two hierarchies of objects, one for representing state-spaces and another for representing search methods:

state_space
        farmer
        water_jug
        salt(Quantity, Measure1, Measure2)
        heuristic_state_space
                bridge
                eight_puzzle
                miss_cann

search_strategy
        blind_search(Bound)
                breadth_first(Bound)
                depth_first(Bound)
        heuristic_search(Threshold)
                best_first(Threshold)
                hill_climbing(Threshold)

Taken together, these two hierarchies implement a framework for solving state-space search problems in Logtalk. There is also a monitor object, performance, which tries to measure the time taken to find a solution, the branching factor while searching for a solution, and the number of transitions made to find a solution.

Print Logtalk, Prolog backend, and kernel versions (if running as a notebook):

%versions

Start by loading the example and the required library files:

logtalk_load(searching(loader)).

The farmer, cabbage, goat and wolf problem:

farmer::initial_state(Initial), depth_first(10)::solve(farmer, Initial, Path), farmer::print_path(Path).

<!-- cgwf.<>.......... c_w_..........<>.f_g_ c_wf.<>..........g_ w_..........<>.fcg_ _gwf.<>.........._c _g..........<>.fc_w _g_f.<>.........._c_w ..........<>.fcgw

Path = [(north,north,north,north),(north,south,north,south),(north,south,north,north),(south,south,north,south),(south,north,north,north),(south,north,south,south),(south,north,south,north),(south,south,south,south)], Initial = (north,north,north,north) ?

true. -->

Missionaries and cannibals problem, solved using a hill-climbing strategy:

miss_cann::initial_state(Initial), hill_climbing(16)::solve(miss_cann, Initial, Path, Cost), miss_cann::print_path(Path).

<!-- MMMCCC.<>.......... MMCC..........<>.MC MMMCC.<>..........C MMM..........<>.CCC MMMC.<>..........CC MC..........<>.MMCC MMCC.<>..........MC CC..........<>.MMMC CCC.<>..........MMM C..........<>.MMMCC CC.<>..........MMMC ..........<>.MMMCCC

Cost = 15, Path = [((3,3),left,0,0),((2,2),right,1,1),((3,2),left,0,1),((3,0),right,0,3),((3,1),left,0,2),((1,1),right,2,2),((2,2),left,1,1),((0,2),right,3,1),((0,3),left,3,0),((0,1),right,3,2),((0,2),left,3,1),((0,0),right,3,3)], Initial = ((3,3),left,0,0)

true. -->

Same problem as above with the addition of a monitor to measure hill-climbing performance:

performance::init, miss_cann::initial_state(Initial), hill_climbing(16)::solve(miss_cann, Initial, Path, Cost), miss_cann::print_path(Path), performance::report.

<!-- MMMCCC.<>.......... MMCC..........<>.MC MMMCC.<>..........C MMM..........<>.CCC MMMC.<>..........CC MC..........<>.MMCC MMCC.<>..........MC CC..........<>.MMMC CCC.<>..........MMM C..........<>.MMMCC CC.<>..........MMMC ..........<>.MMMCCC solution length: 12 number of state transitions: 26 ratio solution length / state transitions: 0.461538 minimum branching degree: 1 average branching degree: 2.30769 maximum branching degree: 3 time: 0.02

Cost = 15, Path = [((3,3),left,0,0),((2,2),right,1,1),((3,2),left,0,1),((3,0),right,0,3),((3,1),left,0,2),((1,1),right,2,2),((2,2),left,1,1),((0,2),right,3,1),((0,3),left,3,0),((0,1),right,3,2),((0,2),left,3,1),((0,0),right,3,3)], Initial = ((3,3),left,0,0) ?

true. -->

Bridge problem, solved using a hill climbing strategy:

performance::init, bridge::initial_state(Initial), hill_climbing(30)::solve(bridge, Initial, Path, Cost), bridge::print_path(Path), performance::report.

<!-- lamp 1 3 6 8 12 1 3 lamp 6 8 12 3 lamp 1 6 8 12 1 3 6 lamp 8 12 3 6 lamp 1 8 12 3 6 8 12 lamp 1 6 8 12 lamp 1 3 1 3 6 8 12 lamp solution length: 8 state transitions (including previous solutions): 555 ratio solution length / state transitions: 0.014414414414414415 minimum branching degree: 1 average branching degree: 7.32579185520362 maximum branching degree: 15 time: 0.012381000000000086 Initial = s([], right, [1, 3, 6, 8, 12]), Path = [s([], right, [1, 3, 6, 8, 12]), s([1, 3], left, [6, 8, 12]), s([3], right, [1, 6, 8, 12]), s([1, 3, 6], left, [8, 12]), s([3, 6], right, [1, 8, 12]), s([3, 6|...], left, [1]), s([6|...], right, [1|...]), s([...|...], left, [])], Cost = 29

true. -->

Water jugs problem solved using a breadth and a depth first strategy, with performance monitors it's interesting to compare the results:

performance::init, water_jug::initial_state(Initial), breadth_first(6)::solve(water_jug, Initial, Path), water_jug::print_path(Path), performance::report.

<!-- 4-gallon jug: 0 3-gallon jug: 0

4-gallon jug: 0 3-gallon jug: 3

4-gallon jug: 3 3-gallon jug: 0

4-gallon jug: 3 3-gallon jug: 3

4-gallon jug: 4 3-gallon jug: 2

4-gallon jug: 0 3-gallon jug: 2

solution length: 6 number of state transitions: 109 ratio solution length / state transitions: 0.0550459 minimum branching degree: 2 average branching degree: 3.63158 maximum branching degree: 4 time: 0.02

Path = [(0,0),(0,3),(3,0),(3,3),(4,2),(0,2)], Initial = (0,0) ?

true. -->

performance::init, water_jug::initial_state(Initial), depth_first(10)::solve(water_jug, Initial, Path), water_jug::print_path(Path), performance::report.

<!-- 4-gallon jug: 0 3-gallon jug: 0

4-gallon jug: 4 3-gallon jug: 0

4-gallon jug: 4 3-gallon jug: 3

4-gallon jug: 0 3-gallon jug: 3

4-gallon jug: 3 3-gallon jug: 0

4-gallon jug: 3 3-gallon jug: 3

4-gallon jug: 4 3-gallon jug: 2

4-gallon jug: 0 3-gallon jug: 2

solution length: 8 number of state transitions: 12 ratio solution length / state transitions: 0.666667 minimum branching degree: 1 average branching degree: 2 maximum branching degree: 3 time: 0.00

Path = [(0,0),(4,0),(4,3),(0,3),(3,0),(3,3),(4,2),(0,2)], Initial = (0,0) ?

true. -->

Salt puzzle using breadth first search

performance::init, salt(100, 500, 200)::initial_state(Initial), breadth_first(6)::solve(salt(100, 500, 200), Initial, Path), salt(100, 500, 200)::print_path(Path), performance::report.

<!-- (0, 0, 0) all_empty (0, 500, 0) fill(m1) (0, 300, 200) transfer(m1, m2) (0, 300, 0) empty(m2) (0, 100, 200) transfer(m1, m2) (100, 0, 200) transfer(m1, acc) solution length: 6 state transitions (including previous solutions): 405 ratio solution length / state transitions: 0.0148148 minimum branching degree: 1 average branching degree: 4.06863 maximum branching degree: 6 time: 0.03 Initial = (0, 0, 0, all_empty), Path = [ (0, 0, 0, all_empty), (0, 500, 0, fill(m1)), (0, 300, 200, transfer(m1, m2)), (0, 300, 0, empty(m2)), (0, 100, 200, transfer(m1, m2)), (100, 0, 200, transfer(..., ...))] .

true. -->

performance::init, salt(200, 250, 550)::initial_state(Initial), breadth_first(7)::solve(salt(200, 250, 550), Initial, Path), salt(200, 250, 550)::print_path(Path), performance::report.

<!-- (0, 0, 0) all_empty (0, 250, 0) fill(m1) (0, 0, 250) transfer(m1, m2) (0, 250, 250) fill(m1) (0, 0, 500) transfer(m1, m2) (0, 250, 500) fill(m1) (0, 200, 550) transfer(m1, m2) (200, 0, 550) transfer(m1, acc) solution length: 8 state transitions (including previous solutions): 2475 ratio solution length / state transitions: 0.00323232 minimum branching degree: 1 average branching degree: 4.21042 maximum branching degree: 6 time: 0.29 Initial = (0, 0, 0, all_empty), Path = [ (0, 0, 0, all_empty), (0, 250, 0, fill(m1)), (0, 0, 250, transfer(m1, m2)), (0, 250, 250, fill(m1)), (0, 0, 500, transfer(m1, m2)), (0, 250, 500, fill(...)), (0, 200, ..., ...), (200, ..., ...)] .

true. -->

performance::init, salt(100, 250, 550)::initial_state(Initial), breadth_first(11)::solve(salt(100, 250, 550), Initial, Path), salt(100, 250, 550)::print_path(Path), performance::report.

<!-- (0, 0, 0) all_empty (0, 0, 550) fill(m2) (0, 250, 300) transfer(m2, m1) (0, 0, 300) empty(m1) (0, 250, 50) transfer(m2, m1) (50, 250, 0) transfer(m2, acc) (50, 0, 0) empty(m1) (50, 0, 550) fill(m2) (50, 250, 300) transfer(m2, m1) (50, 0, 300) empty(m1) (50, 250, 50) transfer(m2, m1) (100, 250, 0) transfer(m2, acc) solution length: 12 state transitions (including previous solutions): 189914 ratio solution length / state transitions: 6.31865e-05 minimum branching degree: 1 average branching degree: 4.47592 maximum branching degree: 6 time: 94.44 Initial = (0, 0, 0, all_empty), Path = [ (0, 0, 0, all_empty), (0, 0, 550, fill(m2)), (0, 250, 300, transfer(m2, m1)), (0, 0, 300, empty(m1)), (0, 250, 50, transfer(m2, m1)), (50, 250, 0, transfer(..., ...)), (50, 0, ..., ...), (50, ..., ...), (..., ...)|...] .

true. -->

Eight puzzle solved using a hill-climbing strategy:

performance::init, eight_puzzle::initial_state(five_steps, Initial), hill_climbing(25)::solve(eight_puzzle, Initial, Path, Cost), eight_puzzle::print_path(Path), performance::report.

<!-- 283 164 7 5

283 1 4 765

2 3 184 765

23 184 765

123 84 765

123 8 4 765 solution length: 6 number of state transitions: 15 ratio solution length / state transitions: 0.4 minimum branching degree: 2 average branching degree: 3.13333 maximum branching degree: 4 time: 0.01

Cost = 5, Path = [[2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3],[2/2,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/3],[2/3,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/3,1/2,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]], Initial = [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ?

true. -->

Eight puzzle solved using a best-first strategy:

performance::init, eight_puzzle::initial_state(five_steps, Initial), best_first(25)::solve(eight_puzzle, Initial, Path, Cost), eight_puzzle::print_path(Path), performance::report.

<!-- 283 164 7 5

283 1 4 765

2 3 184 765

23 184 765

123 84 765

123 8 4 765 solution length: 6 number of state transitions: 15 ratio solution length / state transitions: 0.4 minimum branching degree: 2 average branching degree: 3.13333 maximum branching degree: 4 time: 0.02

Cost = 5, Path = [[2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3],[2/2,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/3],[2/3,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/3,1/2,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]], Initial = [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ?

true. -->

Turn off performance monitor

performance::stop.

<!-- true. -->