34
35
36:- module(simplex,
37 [
38 assignment/2,
39 constraint/3,
40 constraint/4,
41 constraint_add/4,
42 gen_state/1,
43 gen_state_clpr/1,
44 gen_state_clpr/2,
45 maximize/3,
46 minimize/3,
47 objective/2,
48 shadow_price/3,
49 transportation/4,
50 variable_value/3
51 ]). 52
53:- if(exists_source(library(clpr))). 54:- use_module(library(clpr)). 55:- endif. 56:- use_module(library(assoc)). 57:- use_module(library(pio)). 58
59:- autoload(library(apply), [foldl/4, maplist/2, maplist/3]). 60:- autoload(library(lists), [flatten/2, member/2, nth0/3, reverse/2, select/3]). 61
236
237
248
249gen_state_clpr(State) :- gen_state_clpr([], State).
250
251gen_state_clpr(Options, State) :-
252 ( memberchk(eps=_, Options) -> Options1 = Options
253 ; Options1 = [eps=1.0e-6|Options]
254 ),
255 State = clpr_state(Options1, [], []).
256
257clpr_state_options(clpr_state(Os, _, _), Os).
258clpr_state_constraints(clpr_state(_, Cs, _), Cs).
259clpr_state_integrals(clpr_state(_, _, Is), Is).
260clpr_state_add_integral(I, clpr_state(Os, Cs, Is), clpr_state(Os, Cs, [I|Is])).
261clpr_state_add_constraint(C, clpr_state(Os, Cs, Is), clpr_state(Os, [C|Cs], Is)).
262clpr_state_set_constraints(Cs, clpr_state(Os,_,Is), clpr_state(Os, Cs, Is)).
263
264clpr_constraint(Name, Constraint, S0, S) :-
265 ( Constraint = integral(Var) -> clpr_state_add_integral(Var, S0, S)
266 ; Constraint =.. [Op,Left,Right],
267 coeff_one(Left, Left1),
268 clpr_state_add_constraint(c(Name, Left1, Op, Right), S0, S)
269 ).
270
271clpr_constraint(Constraint, S0, S) :-
272 clpr_constraint(0, Constraint, S0, S).
273
274clpr_shadow_price(clpr_solved(_,_,Duals,_), Name, Value) :-
275 memberchk(Name-Value0, Duals),
276 Value is Value0.
277 278 279 280 281 282
283
284
285clpr_make_variables(Cs, Aliases) :-
286 clpr_constraints_variables(Cs, Variables0, []),
287 sort(Variables0, Variables1),
288 pairs_keys(Aliases, Variables1).
289
290clpr_constraints_variables([]) --> [].
291clpr_constraints_variables([c(_, Left, _, _)|Cs]) -->
292 variables(Left),
293 clpr_constraints_variables(Cs).
294
295clpr_set_up(Aliases, c(_Name, Left, Op, Right)) :-
296 clpr_translate_linsum(Left, Aliases, LinSum),
297 CLPRConstraint =.. [Op, LinSum, Right],
298 clpr:{ CLPRConstraint }.
299
300clpr_set_up_noneg(Aliases, Var) :-
301 memberchk(Var-CLPVar, Aliases),
302 { CLPVar >= 0 }.
303
304clpr_translate_linsum([], _, 0).
305clpr_translate_linsum([Coeff*Var|Ls], Aliases, LinSum) :-
306 memberchk(Var-CLPVar, Aliases),
307 LinSum = Coeff*CLPVar + LinRest,
308 clpr_translate_linsum(Ls, Aliases, LinRest).
309
310clpr_dual(Objective0, S0, DualValues) :-
311 clpr_state_constraints(S0, Cs0),
312 clpr_constraints_variables(Cs0, Variables0, []),
313 sort(Variables0, Variables1),
314 maplist(clpr_standard_form, Cs0, Cs1),
315 clpr_include_all_vars(Cs1, Variables1, Cs2),
316 clpr_merge_into(Variables1, Objective0, Objective, []),
317 clpr_unique_names(Cs2, 0, Names),
318 maplist(clpr_constraint_coefficient, Cs2, Coefficients),
319 lists_transpose(Coefficients, TCs),
320 maplist(clpr_dual_constraints(Names), TCs, Objective, DualConstraints),
321 phrase(clpr_nonneg_constraints(Cs2, Names), DualNonNeg),
322 append(DualConstraints, DualNonNeg, DualConstraints1),
323 maplist(clpr_dual_objective, Cs2, Names, DualObjective),
324 clpr_make_variables(DualConstraints1, Aliases),
325 maplist(clpr_set_up(Aliases), DualConstraints1),
326 clpr_translate_linsum(DualObjective, Aliases, LinExpr),
327 minimize(LinExpr),
328 Aliases = DualValues.
329
330
331
332clpr_dual_objective(c(_, _, _, Right), Name, Right*Name).
333
334clpr_nonneg_constraints([], _) --> [].
335clpr_nonneg_constraints([C|Cs], [Name|Names]) -->
336 { C = c(_, _, Op, _) },
337 ( { Op == (=<) } -> [c(0, [1*Name], (>=), 0)]
338 ; []
339 ),
340 clpr_nonneg_constraints(Cs, Names).
341
342
343clpr_dual_constraints(Names, Coeffs, O*_, Constraint) :-
344 maplist(clpr_dual_linsum, Coeffs, Names, Linsum),
345 Constraint = c(0, Linsum, (>=), O).
346
347clpr_dual_linsum(Coeff, Name, Coeff*Name).
348
349clpr_constraint_coefficient(c(_, Left, _, _), Coeff) :-
350 maplist(all_coeffs, Left, Coeff).
351
352all_coeffs(Coeff*_, Coeff).
353
354clpr_unique_names([], _, []).
355clpr_unique_names([C0|Cs0], Num, [N|Ns]) :-
356 C0 = c(Name, _, _, _),
357 ( Name == 0 -> N = Num, Num1 is Num + 1
358 ; N = Name, Num1 = Num
359 ),
360 clpr_unique_names(Cs0, Num1, Ns).
361
362clpr_include_all_vars([], _, []).
363clpr_include_all_vars([C0|Cs0], Variables, [C|Cs]) :-
364 C0 = c(Name, Left0, Op, Right),
365 clpr_merge_into(Variables, Left0, Left, []),
366 C = c(Name, Left, Op, Right),
367 clpr_include_all_vars(Cs0, Variables, Cs).
368
369clpr_merge_into([], _, Ls, Ls).
370clpr_merge_into([V|Vs], Left, Ls0, Ls) :-
371 ( member(Coeff*V, Left) ->
372 Ls0 = [Coeff*V|Rest]
373 ;
374 Ls0 = [0*V|Rest]
375 ),
376 clpr_merge_into(Vs, Left, Rest, Ls).
377
378
379
380
381clpr_maximize(Expr0, S0, S) :-
382 coeff_one(Expr0, Expr),
383 clpr_state_constraints(S0, Cs),
384 clpr_make_variables(Cs, Aliases),
385 maplist(clpr_set_up(Aliases), Cs),
386 clpr_constraints_variables(Cs, Variables0, []),
387 sort(Variables0, Variables1),
388 maplist(clpr_set_up_noneg(Aliases), Variables1),
389 clpr_translate_linsum(Expr, Aliases, LinExpr),
390 clpr_state_integrals(S0, Is),
391 ( Is == [] ->
392 maximize(LinExpr),
393 Sup is LinExpr,
394 clpr_dual(Expr, S0, DualValues),
395 S = clpr_solved(Sup, Aliases, DualValues, S0)
396 ;
397 clpr_state_options(S0, Options),
398 memberchk(eps=Eps, Options),
399 maplist(clpr_fetch_var(Aliases), Is, Vars),
400 bb_inf(Vars, -LinExpr, Sup, Vertex, Eps),
401 pairs_keys_values(Values, Is, Vertex),
402 403 Sup1 is -Sup,
404 S = clpr_solved(Sup1, Values, [], S0)
405 ).
406
407clpr_minimize(Expr0, S0, S) :-
408 coeff_one(Expr0, Expr1),
409 maplist(linsum_negate, Expr1, Expr2),
410 clpr_maximize(Expr2, S0, S1),
411 S1 = clpr_solved(Sup, Values, Duals, S0),
412 Inf is -Sup,
413 S = clpr_solved(Inf, Values, Duals, S0).
414
415clpr_fetch_var(Aliases, Var, X) :- memberchk(Var-X, Aliases).
416
417clpr_variable_value(clpr_solved(_, Aliases, _, _), Variable, Value) :-
418 memberchk(Variable-Value0, Aliases),
419 Value is Value0.
420 421 422 423 424 425
426clpr_objective(clpr_solved(Obj, _, _, _), Obj).
427
428clpr_standard_form(c(Name, Left, Op, Right), S) :-
429 clpr_standard_form_(Op, Name, Left, Right, S).
430
431clpr_standard_form_((=), Name, Left, Right, c(Name, Left, (=), Right)).
432clpr_standard_form_((>=), Name, Left, Right, c(Name, Left1, (=<), Right1)) :-
433 Right1 is -Right,
434 maplist(linsum_negate, Left, Left1).
435clpr_standard_form_((=<), Name, Left, Right, c(Name, Left, (=<), Right)).
436
437
453
454
455find_row(Variable, [Row|Rows], R) :-
456 Row = row(V, _, _),
457 ( V == Variable -> R = Row
458 ; find_row(Variable, Rows, R)
459 ).
460
465
466variable_value(State, Variable, Value) :-
467 functor(State, F, _),
468 ( F == solved ->
469 solved_tableau(State, Tableau),
470 tableau_rows(Tableau, Rows),
471 ( find_row(Variable, Rows, Row) -> Row = row(_, _, Value)
472 ; Value = 0
473 )
474 ; F == clpr_solved -> clpr_variable_value(State, Variable, Value)
475 ).
476
477var_zero(State, _Coeff*Var) :- variable_value(State, Var, 0).
478
479list_first(Ls, F, Index) :- once(nth0(Index, Ls, F)).
480
486
487shadow_price(State, Name, Value) :-
488 functor(State, F, _),
489 ( F == solved ->
490 solved_tableau(State, Tableau),
491 tableau_objective(Tableau, row(_,Left,_)),
492 tableau_variables(Tableau, Variables),
493 solved_names(State, Names),
494 memberchk(user(Name)-Var, Names),
495 list_first(Variables, Var, Nth0),
496 nth0(Nth0, Left, Value)
497 ; F == clpr_solved -> clpr_shadow_price(State, Name, Value)
498 ).
499
504
505objective(State, Obj) :-
506 functor(State, F, _),
507 ( F == solved ->
508 solved_tableau(State, Tableau),
509 tableau_objective(Tableau, Objective),
510 Objective = row(_, _, Obj)
511 ; clpr_objective(State, Obj)
512 ).
513
514 515
516tableau_objective(tableau(Obj, _, _, _), Obj).
517tableau_rows(tableau(_, _, _, Rows), Rows).
518tableau_indicators(tableau(_, _, Inds, _), Inds).
519tableau_variables(tableau(_, Vars, _, _), Vars).
520
538
539
540constraint_name(c(Name, _, _, _), Name).
541constraint_op(c(_, _, Op, _), Op).
542constraint_left(c(_, Left, _, _), Left).
543constraint_right(c(_, _, _, Right), Right).
544
548
549gen_state(state(0,[],[],[])).
550
551state_add_constraint(C, S0, S) :-
552 ( constraint_name(C, 0), constraint_left(C, [_Coeff*_Var]) ->
553 state_merge_constraint(C, S0, S)
554 ; state_add_constraint_(C, S0, S)
555 ).
556
557state_add_constraint_(C, state(VID,Ns,Cs,Is), state(VID,Ns,[C|Cs],Is)).
558
559state_merge_constraint(C, S0, S) :-
560 constraint_left(C, [Coeff0*Var0]),
561 constraint_right(C, Right0),
562 constraint_op(C, Op),
563 ( Coeff0 =:= 0 ->
564 ( Op == (=) -> Right0 =:= 0, S0 = S
565 ; Op == (=<) -> S0 = S
566 ; Op == (>=) -> Right0 =:= 0, S0 = S
567 )
568 ; Coeff0 < 0 -> state_add_constraint_(C, S0, S)
569 ; Right is Right0 rdiv Coeff0,
570 state_constraints(S0, Cs),
571 ( select(c(0, [1*Var0], Op, CRight), Cs, RestCs) ->
572 ( Op == (=) -> CRight =:= Right, S0 = S
573 ; Op == (=<) ->
574 NewRight is min(Right, CRight),
575 NewCs = [c(0, [1*Var0], Op, NewRight)|RestCs],
576 state_set_constraints(NewCs, S0, S)
577 ; Op == (>=) ->
578 NewRight is max(Right, CRight),
579 NewCs = [c(0, [1*Var0], Op, NewRight)|RestCs],
580 state_set_constraints(NewCs, S0, S)
581 )
582 ; state_add_constraint_(c(0, [1*Var0], Op, Right), S0, S)
583 )
584 ).
585
586
587state_add_name(Name, Var), [state(VID,[Name-Var|Ns],Cs,Is)] -->
588 [state(VID,Ns,Cs,Is)].
589
590state_add_integral(Var, state(VID,Ns,Cs,Is), state(VID,Ns,Cs,[Var|Is])).
591
592state_constraints(state(_, _, Cs, _), Cs).
593state_names(state(_,Names,_,_), Names).
594state_integrals(state(_,_,_,Is), Is).
595state_set_constraints(Cs, state(VID,Ns,_,Is), state(VID,Ns,Cs,Is)).
596state_set_integrals(Is, state(VID,Ns,Cs,_), state(VID,Ns,Cs,Is)).
597
598
599state_next_var(VarID0), [state(VarID1,Names,Cs,Is)] -->
600 [state(VarID0,Names,Cs,Is)],
601 { VarID1 is VarID0 + 1 }.
602
603solved_tableau(solved(Tableau, _, _), Tableau).
604solved_names(solved(_, Names,_), Names).
605solved_integrals(solved(_,_,Is), Is).
606
609
621
622
623constraint(C, S0, S) :-
624 functor(S0, F, _),
625 ( F == state ->
626 ( C = integral(Var) -> state_add_integral(Var, S0, S)
627 ; constraint_(0, C, S0, S)
628 )
629 ; F == clpr_state -> clpr_constraint(C, S0, S)
630 ).
631
636
637constraint(Name, C, S0, S) :- constraint_(user(Name), C, S0, S).
638
639constraint_(Name, C, S0, S) :-
640 functor(S0, F, _),
641 ( F == state ->
642 ( C = integral(Var) -> state_add_integral(Var, S0, S)
643 ; C =.. [Op, Left0, Right0],
644 coeff_one(Left0, Left),
645 Right0 >= 0,
646 Right is rationalize(Right0),
647 state_add_constraint(c(Name, Left, Op, Right), S0, S)
648 )
649 ; F == clpr_state -> clpr_constraint(Name, C, S0, S)
650 ).
651
657
658constraint_add(Name, A, S0, S) :-
659 functor(S0, F, _),
660 ( F == state ->
661 state_constraints(S0, Cs),
662 add_left(Cs, user(Name), A, Cs1),
663 state_set_constraints(Cs1, S0, S)
664 ; F == clpr_state ->
665 clpr_state_constraints(S0, Cs),
666 add_left(Cs, Name, A, Cs1),
667 clpr_state_set_constraints(Cs1, S0, S)
668 ).
669
670
671add_left([c(Name,Left0,Op,Right)|Cs], V, A, [c(Name,Left,Op,Right)|Rest]) :-
672 ( Name == V -> append(A, Left0, Left), Rest = Cs
673 ; Left0 = Left, add_left(Cs, V, A, Rest)
674 ).
675
676branching_variable(State, Variable) :-
677 solved_integrals(State, Integrals),
678 member(Variable, Integrals),
679 variable_value(State, Variable, Value),
680 \+ integer(Value).
681
682
683worth_investigating(ZStar0, _, _) :- var(ZStar0).
684worth_investigating(ZStar0, AllInt, Z) :-
685 nonvar(ZStar0),
686 ( AllInt =:= 1 -> Z1 is floor(Z)
687 ; Z1 = Z
688 ),
689 Z1 > ZStar0.
690
691
692branch_and_bound(Objective, Solved, AllInt, ZStar0, ZStar, S0, S, Found) :-
693 objective(Solved, Z),
694 ( worth_investigating(ZStar0, AllInt, Z) ->
695 ( branching_variable(Solved, BrVar) ->
696 variable_value(Solved, BrVar, Value),
697 Value1 is floor(Value),
698 Value2 is Value1 + 1,
699 constraint([BrVar] =< Value1, S0, SubProb1),
700 ( maximize_(Objective, SubProb1, SubSolved1) ->
701 Sub1Feasible = 1,
702 objective(SubSolved1, Obj1)
703 ; Sub1Feasible = 0
704 ),
705 constraint([BrVar] >= Value2, S0, SubProb2),
706 ( maximize_(Objective, SubProb2, SubSolved2) ->
707 Sub2Feasible = 1,
708 objective(SubSolved2, Obj2)
709 ; Sub2Feasible = 0
710 ),
711 ( Sub1Feasible =:= 1, Sub2Feasible =:= 1 ->
712 ( Obj1 >= Obj2 ->
713 First = SubProb1,
714 Second = SubProb2,
715 FirstSolved = SubSolved1,
716 SecondSolved = SubSolved2
717 ; First = SubProb2,
718 Second = SubProb1,
719 FirstSolved = SubSolved2,
720 SecondSolved = SubSolved1
721 ),
722 branch_and_bound(Objective, FirstSolved, AllInt, ZStar0, ZStar1, First, Solved1, Found1),
723 branch_and_bound(Objective, SecondSolved, AllInt, ZStar1, ZStar2, Second, Solved2, Found2)
724 ; Sub1Feasible =:= 1 ->
725 branch_and_bound(Objective, SubSolved1, AllInt, ZStar0, ZStar1, SubProb1, Solved1, Found1),
726 Found2 = 0
727 ; Sub2Feasible =:= 1 ->
728 Found1 = 0,
729 branch_and_bound(Objective, SubSolved2, AllInt, ZStar0, ZStar2, SubProb2, Solved2, Found2)
730 ; Found1 = 0, Found2 = 0
731 ),
732 ( Found1 =:= 1, Found2 =:= 1 -> S = Solved2, ZStar = ZStar2
733 ; Found1 =:= 1 -> S = Solved1, ZStar = ZStar1
734 ; Found2 =:= 1 -> S = Solved2, ZStar = ZStar2
735 ; S = S0, ZStar = ZStar0
736 ),
737 Found is max(Found1, Found2)
738 ; S = Solved, ZStar = Z, Found = 1
739 )
740 ; ZStar = ZStar0, S = S0, Found = 0
741 ).
742
750
751maximize(Z0, S0, S) :-
752 coeff_one(Z0, Z1),
753 functor(S0, F, _),
754 ( F == state -> maximize_mip(Z1, S0, S)
755 ; F == clpr_state -> clpr_maximize(Z1, S0, S)
756 ).
757
758maximize_mip(Z, S0, S) :-
759 maximize_(Z, S0, Solved),
760 state_integrals(S0, Is),
761 ( Is == [] -> S = Solved
762 ; 763 764 reverse(Is, Is1),
765 state_set_integrals(Is1, S0, S1),
766 ( all_integers(Z, Is1) -> AllInt = 1
767 ; AllInt = 0
768 ),
769 branch_and_bound(Z, Solved, AllInt, _, _, S1, S, 1)
770 ).
771
772all_integers([], _).
773all_integers([Coeff*V|Rest], Is) :-
774 integer(Coeff),
775 memberchk(V, Is),
776 all_integers(Rest, Is).
777
781
782minimize(Z0, S0, S) :-
783 coeff_one(Z0, Z1),
784 functor(S0, F, _),
785 ( F == state ->
786 maplist(linsum_negate, Z1, Z2),
787 maximize_mip(Z2, S0, S1),
788 solved_tableau(S1, tableau(Obj, Vars, Inds, Rows)),
789 solved_names(S1, Names),
790 Obj = row(z, Left0, Right0),
791 all_times(Left0, -1, Left),
792 Right is -Right0,
793 Obj1 = row(z, Left, Right),
794 state_integrals(S0, Is),
795 S = solved(tableau(Obj1, Vars, Inds, Rows), Names, Is)
796 ; F == clpr_state -> clpr_minimize(Z1, S0, S)
797 ).
798
799op_pendant(>=, =<).
800op_pendant(=<, >=).
801
802constraints_collapse([]) --> [].
803constraints_collapse([C|Cs]) -->
804 { C = c(Name, Left, Op, Right) },
805 ( { Name == 0, Left = [1*Var], op_pendant(Op, P) } ->
806 { Pendant = c(0, [1*Var], P, Right) },
807 ( { select(Pendant, Cs, Rest) } ->
808 [c(0, Left, (=), Right)],
809 { CsLeft = Rest }
810 ; [C],
811 { CsLeft = Cs }
812 )
813 ; [C],
814 { CsLeft = Cs }
815 ),
816 constraints_collapse(CsLeft).
817
819
820maximize_(Z, S0, S) :-
821 state_constraints(S0, Cs0),
822 phrase(constraints_collapse(Cs0), Cs1),
823 phrase(constraints_normalize(Cs1, Cs, As0), [S0], [S1]),
824 flatten(As0, As1),
825 ( As1 == [] ->
826 make_tableau(Z, Cs, Tableau0),
827 simplex(Tableau0, Tableau),
828 state_names(S1, Names),
829 state_integrals(S1, Is),
830 S = solved(Tableau, Names, Is)
831 ; state_names(S1, Names),
832 state_integrals(S1, Is),
833 two_phase_simplex(Z, Cs, As1, Names, Is, S)
834 ).
835
836make_tableau(Z, Cs, Tableau) :-
837 ZC = c(_, Z, _),
838 phrase(constraints_variables([ZC|Cs]), Variables0),
839 sort(Variables0, Variables),
840 constraints_rows(Cs, Variables, Rows),
841 linsum_row(Variables, Z, Objective1),
842 all_times(Objective1, -1, Obj),
843 length(Variables, LVs),
844 length(Ones, LVs),
845 all_one(Ones),
846 Tableau = tableau(row(z, Obj, 0), Variables, Ones, Rows).
847
848all_one(Ones) :- maplist(=(1), Ones).
849
850proper_form(Variables, Rows, _Coeff*A, Obj0, Obj) :-
851 ( find_row(A, Rows, PivotRow) ->
852 list_first(Variables, A, Col),
853 row_eliminate(Obj0, PivotRow, Col, Obj)
854 ; Obj = Obj0
855 ).
856
857
858two_phase_simplex(Z, Cs, As, Names, Is, S) :-
859 860 make_tableau(As, Cs, Tableau0),
861 Tableau0 = tableau(Obj0, Variables, Inds, Rows),
862 foldl(proper_form(Variables, Rows), As, Obj0, Obj),
863 simplex(tableau(Obj, Variables, Inds, Rows), Tableau1),
864 maplist(var_zero(solved(Tableau1, _, _)), As),
865 866 tableau_rows(Tableau1, Rows2),
867 eliminate_artificial(As, As, Variables, Rows2, Rows3),
868 list_nths(As, Variables, Nths0),
869 nths_to_zero(Nths0, Inds, Inds1),
870 linsum_row(Variables, Z, Objective),
871 all_times(Objective, -1, Objective1),
872 foldl(proper_form(Variables, Rows3), Z, row(z, Objective1, 0), ObjRow),
873 simplex(tableau(ObjRow, Variables, Inds1, Rows3), Tableau),
874 S = solved(Tableau, Names, Is).
875
881
882eliminate_artificial([], _, _, Rows, Rows).
883eliminate_artificial([_Coeff*A|Rest], As, Variables, Rows0, Rows) :-
884 ( select(row(A, Left, 0), Rows0, Others) ->
885 ( nth0(Col, Left, Coeff),
886 Coeff =\= 0,
887 nth0(Col, Variables, Var),
888 \+ memberchk(_*Var, As) ->
889 row_divide(row(A, Left, 0), Coeff, Row),
890 gauss_elimination(Rows0, Row, Col, Rows1),
891 swap_basic(Rows1, A, Var, Rows2)
892 ; Rows2 = Others
893 )
894 ; Rows2 = Rows0
895 ),
896 eliminate_artificial(Rest, As, Variables, Rows2, Rows).
897
898nths_to_zero([], Inds, Inds).
899nths_to_zero([Nth|Nths], Inds0, Inds) :-
900 nth_to_zero(Inds0, 0, Nth, Inds1),
901 nths_to_zero(Nths, Inds1, Inds).
902
903nth_to_zero([], _, _, []).
904nth_to_zero([I|Is], Curr, Nth, [Z|Zs]) :-
905 ( Curr =:= Nth -> [Z|Zs] = [0|Is]
906 ; Z = I,
907 Next is Curr + 1,
908 nth_to_zero(Is, Next, Nth, Zs)
909 ).
910
911
912list_nths([], _, []).
913list_nths([_Coeff*A|As], Variables, [Nth|Nths]) :-
914 list_first(Variables, A, Nth),
915 list_nths(As, Variables, Nths).
916
917
918linsum_negate(Coeff0*Var, Coeff*Var) :- Coeff is -Coeff0.
919
920linsum_row([], _, []).
921linsum_row([V|Vs], Ls, [C|Cs]) :-
922 ( memberchk(Coeff*V, Ls) -> C is rationalize(Coeff)
923 ; C = 0
924 ),
925 linsum_row(Vs, Ls, Cs).
926
927constraints_rows([], _, []).
928constraints_rows([C|Cs], Vars, [R|Rs]) :-
929 C = c(Var, Left0, Right),
930 linsum_row(Vars, Left0, Left),
931 R = row(Var, Left, Right),
932 constraints_rows(Cs, Vars, Rs).
933
934constraints_normalize([], [], []) --> [].
935constraints_normalize([C0|Cs0], [C|Cs], [A|As]) -->
936 { constraint_op(C0, Op),
937 constraint_left(C0, Left),
938 constraint_right(C0, Right),
939 constraint_name(C0, Name),
940 Con =.. [Op, Left, Right] },
941 constraint_normalize(Con, Name, C, A),
942 constraints_normalize(Cs0, Cs, As).
943
944constraint_normalize(As0 =< B0, Name, c(Slack, [1*Slack|As0], B0), []) -->
945 state_next_var(Slack),
946 state_add_name(Name, Slack).
947constraint_normalize(As0 = B0, Name, c(AID, [1*AID|As0], B0), [-1*AID]) -->
948 state_next_var(AID),
949 state_add_name(Name, AID).
950constraint_normalize(As0 >= B0, Name, c(AID, [-1*Slack,1*AID|As0], B0), [-1*AID]) -->
951 state_next_var(Slack),
952 state_next_var(AID),
953 state_add_name(Name, AID).
954
955coeff_one([], []).
956coeff_one([L|Ls], [Coeff*Var|Rest]) :-
957 ( L = A*B -> Coeff = A, Var = B
958 ; Coeff = 1, Var = L
959 ),
960 coeff_one(Ls, Rest).
961
962
963tableau_optimal(Tableau) :-
964 tableau_objective(Tableau, Objective),
965 tableau_indicators(Tableau, Indicators),
966 Objective = row(_, Left, _),
967 all_nonnegative(Left, Indicators).
968
969all_nonnegative([], []).
970all_nonnegative([Coeff|As], [I|Is]) :-
971 ( I =:= 0 -> true
972 ; Coeff >= 0
973 ),
974 all_nonnegative(As, Is).
975
976pivot_column(Tableau, PCol) :-
977 tableau_objective(Tableau, row(_, Left, _)),
978 tableau_indicators(Tableau, Indicators),
979 first_negative(Left, Indicators, 0, Index0, Val, RestL, RestI),
980 Index1 is Index0 + 1,
981 pivot_column(RestL, RestI, Val, Index1, Index0, PCol).
982
983first_negative([L|Ls], [I|Is], Index0, N, Val, RestL, RestI) :-
984 Index1 is Index0 + 1,
985 ( I =:= 0 -> first_negative(Ls, Is, Index1, N, Val, RestL, RestI)
986 ; ( L < 0 -> N = Index0, Val = L, RestL = Ls, RestI = Is
987 ; first_negative(Ls, Is, Index1, N, Val, RestL, RestI)
988 )
989 ).
990
991
992pivot_column([], _, _, _, N, N).
993pivot_column([L|Ls], [I|Is], Coeff0, Index0, N0, N) :-
994 ( I =:= 0 -> Coeff1 = Coeff0, N1 = N0
995 ; ( L < Coeff0 -> Coeff1 = L, N1 = Index0
996 ; Coeff1 = Coeff0, N1 = N0
997 )
998 ),
999 Index1 is Index0 + 1,
1000 pivot_column(Ls, Is, Coeff1, Index1, N1, N).
1001
1002
1003pivot_row(Tableau, PCol, PRow) :-
1004 tableau_rows(Tableau, Rows),
1005 pivot_row(Rows, PCol, false, _, 0, 0, PRow).
1006
1007pivot_row([], _, true, _, _, Row, Row).
1008pivot_row([Row|Rows], PCol, Bounded0, Min0, Index0, PRow0, PRow) :-
1009 Row = row(_Var, Left, B),
1010 nth0(PCol, Left, Ae),
1011 ( Ae > 0 ->
1012 Bounded1 = true,
1013 Bound is B rdiv Ae,
1014 ( Bounded0 == true ->
1015 ( Bound < Min0 -> Min1 = Bound, PRow1 = Index0
1016 ; Min1 = Min0, PRow1 = PRow0
1017 )
1018 ; Min1 = Bound, PRow1 = Index0
1019 )
1020 ; Bounded1 = Bounded0, Min1 = Min0, PRow1 = PRow0
1021 ),
1022 Index1 is Index0 + 1,
1023 pivot_row(Rows, PCol, Bounded1, Min1, Index1, PRow1, PRow).
1024
1025
1026row_divide(row(Var, Left0, Right0), Div, row(Var, Left, Right)) :-
1027 all_divide(Left0, Div, Left),
1028 Right is Right0 rdiv Div.
1029
1030
1031all_divide([], _, []).
1032all_divide([R|Rs], Div, [DR|DRs]) :-
1033 DR is R rdiv Div,
1034 all_divide(Rs, Div, DRs).
1035
1036gauss_elimination([], _, _, []).
1037gauss_elimination([Row0|Rows0], PivotRow, Col, [Row|Rows]) :-
1038 PivotRow = row(PVar, _, _),
1039 Row0 = row(Var, _, _),
1040 ( PVar == Var -> Row = PivotRow
1041 ; row_eliminate(Row0, PivotRow, Col, Row)
1042 ),
1043 gauss_elimination(Rows0, PivotRow, Col, Rows).
1044
1045row_eliminate(row(Var, Ls0, R0), row(_, PLs, PR), Col, row(Var, Ls, R)) :-
1046 nth0(Col, Ls0, Coeff),
1047 ( Coeff =:= 0 -> Ls = Ls0, R = R0
1048 ; all_times_minus([PR|PLs], Coeff, [R0|Ls0], [R|Ls])
1049 ).
1050
1051all_times_minus([], _, _, []).
1052all_times_minus([A|As], T, [B|Bs], [AT|ATs]) :-
1053 ( A == 0 -> AT = B
1054 ; AT is B - A * T
1055 ),
1056 all_times_minus(As, T, Bs, ATs).
1057
1058all_times([], _, []).
1059all_times([A|As], T, [AT|ATs]) :-
1060 AT is A * T,
1061 all_times(As, T, ATs).
1062
1063simplex(Tableau0, Tableau) :-
1064 ( tableau_optimal(Tableau0) -> Tableau0 = Tableau
1065 ; pivot_column(Tableau0, PCol),
1066 pivot_row(Tableau0, PCol, PRow),
1067 Tableau0 = tableau(Obj0,Variables,Inds,Matrix0),
1068 nth0(PRow, Matrix0, Row0),
1069 Row0 = row(Leaving, Left0, _Right0),
1070 nth0(PCol, Left0, PivotElement),
1071 row_divide(Row0, PivotElement, Row1),
1072 gauss_elimination([Obj0|Matrix0], Row1, PCol, [Obj|Matrix1]),
1073 nth0(PCol, Variables, Entering),
1074 swap_basic(Matrix1, Leaving, Entering, Matrix),
1075 simplex(tableau(Obj,Variables,Inds,Matrix), Tableau)
1076 ).
1077
1078swap_basic([Row0|Rows0], Old, New, Matrix) :-
1079 Row0 = row(Var, Left, Right),
1080 ( Var == Old -> Matrix = [row(New, Left, Right)|Rows0]
1081 ; Matrix = [Row0|Rest],
1082 swap_basic(Rows0, Old, New, Rest)
1083 ).
1084
1085constraints_variables([]) --> [].
1086constraints_variables([c(_,Left,_)|Cs]) -->
1087 variables(Left),
1088 constraints_variables(Cs).
1089
1090variables([]) --> [].
1091variables([_Coeff*Var|Rest]) --> [Var], variables(Rest).
1092
1093
1096
1103
1111
1112arcs([], Assoc, Assoc).
1113arcs([arc(From0,To0,C)|As], Assoc0, Assoc) :-
1114 ( get_assoc(From0, Assoc0, From) -> Assoc1 = Assoc0
1115 ; put_assoc(From0, Assoc0, From, Assoc1),
1116 put_attr(From, node, From0)
1117 ),
1118 ( get_attr(From, edges, Es) -> true
1119 ; Es = []
1120 ),
1121 put_attr(F, flow, 0),
1122 put_attr(From, edges, [arc_to(To,F,C)|Es]),
1123 ( get_assoc(To0, Assoc1, To) -> Assoc2 = Assoc1
1124 ; put_assoc(To0, Assoc1, To, Assoc2),
1125 put_attr(To, node, To0)
1126 ),
1127 ( get_attr(To, edges, Es1) -> true
1128 ; Es1 = []
1129 ),
1130 put_attr(To, edges, [arc_from(From,F,C)|Es1]),
1131 arcs(As, Assoc2, Assoc).
1132
1133
1134edmonds_karp(Arcs0, Arcs) :-
1135 empty_assoc(E),
1136 arcs(Arcs0, E, Assoc),
1137 get_assoc(s, Assoc, S),
1138 get_assoc(t, Assoc, T),
1139 maximum_flow(S, T),
1140 1141 term_attvars(S, AttVars),
1142 phrase(flow_to_arcs(S), Ls),
1143 arcs_assoc(Ls, Arcs),
1144 maplist(del_attrs, AttVars).
1145
1146flow_to_arcs(V) -->
1147 ( { get_attr(V, edges, Es) } ->
1148 { del_attr(V, edges),
1149 get_attr(V, node, Name) },
1150 flow_to_arcs_(Es, Name)
1151 ; []
1152 ).
1153
1154flow_to_arcs_([], _) --> [].
1155flow_to_arcs_([E|Es], Name) -->
1156 edge_to_arc(E, Name),
1157 flow_to_arcs_(Es, Name).
1158
1159edge_to_arc(arc_from(_,_,_), _) --> [].
1160edge_to_arc(arc_to(To,F,C), Name) -->
1161 { get_attr(To, node, NTo),
1162 get_attr(F, flow, Flow) },
1163 [arc(Name,NTo,Flow,C)],
1164 flow_to_arcs(To).
1165
1166arcs_assoc(Arcs, Hash) :-
1167 empty_assoc(E),
1168 arcs_assoc(Arcs, E, Hash).
1169
1170arcs_assoc([], Hs, Hs).
1171arcs_assoc([arc(From,To,F,C)|Rest], Hs0, Hs) :-
1172 ( get_assoc(From, Hs0, As) -> Hs1 = Hs0
1173 ; put_assoc(From, Hs0, [], Hs1),
1174 empty_assoc(As)
1175 ),
1176 put_assoc(To, As, arc(From,To,F,C), As1),
1177 put_assoc(From, Hs1, As1, Hs2),
1178 arcs_assoc(Rest, Hs2, Hs).
1179
1180
1185
1186maximum_flow(S, T) :-
1187 ( augmenting_path([[S]], Levels, T) ->
1188 phrase(augmenting_path(S, T), Path),
1189 Path = [augment(_,First,_)|Rest],
1190 path_minimum(Rest, First, Min),
1191 1192 maplist(augment(Min), Path),
1193 maplist(maplist(clear_parent), Levels),
1194 maximum_flow(S, T)
1195 ; true
1196 ).
1197
1198clear_parent(V) :- del_attr(V, parent).
1199
1200augmenting_path(Levels0, Levels, T) :-
1201 Levels0 = [Vs|_],
1202 Levels1 = [Tos|Levels0],
1203 phrase(reachables(Vs), Tos),
1204 Tos = [_|_],
1205 ( member(To, Tos), To == T -> Levels = Levels1
1206 ; augmenting_path(Levels1, Levels, T)
1207 ).
1208
1209reachables([]) --> [].
1210reachables([V|Vs]) -->
1211 { get_attr(V, edges, Es) },
1212 reachables_(Es, V),
1213 reachables(Vs).
1214
1215reachables_([], _) --> [].
1216reachables_([E|Es], V) -->
1217 reachable(E, V),
1218 reachables_(Es, V).
1219
1220reachable(arc_from(V,F,_), P) -->
1221 ( { \+ get_attr(V, parent, _),
1222 get_attr(F, flow, Flow),
1223 Flow > 0 } ->
1224 { put_attr(V, parent, P-augment(F,Flow,-)) },
1225 [V]
1226 ; []
1227 ).
1228reachable(arc_to(V,F,C), P) -->
1229 ( { \+ get_attr(V, parent, _),
1230 get_attr(F, flow, Flow),
1231 ( C == inf ; Flow < C )} ->
1232 { ( C == inf -> Diff = inf
1233 ; Diff is C - Flow
1234 ),
1235 put_attr(V, parent, P-augment(F,Diff,+)) },
1236 [V]
1237 ; []
1238 ).
1239
1240
1241path_minimum([], Min, Min).
1242path_minimum([augment(_,A,_)|As], Min0, Min) :-
1243 ( A == inf -> Min1 = Min0
1244 ; Min1 is min(Min0,A)
1245 ),
1246 path_minimum(As, Min1, Min).
1247
1248augment(Min, augment(F,_,Sign)) :-
1249 get_attr(F, flow, Flow0),
1250 flow_(Sign, Flow0, Min, Flow),
1251 put_attr(F, flow, Flow).
1252
1253flow_(+, F0, A, F) :- F is F0 + A.
1254flow_(-, F0, A, F) :- F is F0 - A.
1255
1256augmenting_path(S, V) -->
1257 ( { V == S } -> []
1258 ; { get_attr(V, parent, V1-Augment) },
1259 [Augment],
1260 augmenting_path(S, V1)
1261 ).
1262
1264
1265naive_init(Supplies, _, Costs, Alphas, Betas) :-
1266 same_length(Supplies, Alphas),
1267 maplist(=(0), Alphas),
1268 lists_transpose(Costs, TCs),
1269 maplist(min_list, TCs, Betas).
1270
1272
1273lists_transpose([], []).
1274lists_transpose([L|Ls], Ts) :- foldl(transpose_, L, Ts, [L|Ls], _).
1275
1276transpose_(_, Fs, Lists0, Lists) :-
1277 maplist(list_first_rest, Lists0, Fs, Lists).
1278
1279list_first_rest([L|Ls], L, Ls).
1280
1285
1286
1297
1298transportation(Supplies, Demands, Costs, Transport) :-
1299 length(Supplies, LAs),
1300 length(Demands, LBs),
1301 naive_init(Supplies, Demands, Costs, Alphas, Betas),
1302 network_head(Supplies, 1, SArcs, []),
1303 network_tail(Demands, 1, DArcs, []),
1304 numlist(1, LAs, Sources),
1305 numlist(1, LBs, Sinks0),
1306 maplist(make_sink, Sinks0, Sinks),
1307 append(SArcs, DArcs, Torso),
1308 alpha_beta(Torso, Sources, Sinks, Costs, Alphas, Betas, Flow),
1309 flow_transport(Supplies, 1, Demands, Flow, Transport).
1310
1311flow_transport([], _, _, _, []).
1312flow_transport([_|Rest], N, Demands, Flow, [Line|Lines]) :-
1313 transport_line(Demands, N, 1, Flow, Line),
1314 N1 is N + 1,
1315 flow_transport(Rest, N1, Demands, Flow, Lines).
1316
1317transport_line([], _, _, _, []).
1318transport_line([_|Rest], I, J, Flow, [L|Ls]) :-
1319 ( get_assoc(I, Flow, As), get_assoc(p(J), As, arc(I,p(J),F,_)) -> L = F
1320 ; L = 0
1321 ),
1322 J1 is J + 1,
1323 transport_line(Rest, I, J1, Flow, Ls).
1324
1325
1326make_sink(N, p(N)).
1327
1328network_head([], _) --> [].
1329network_head([S|Ss], N) -->
1330 [arc(s,N,S)],
1331 { N1 is N + 1 },
1332 network_head(Ss, N1).
1333
1334network_tail([], _) --> [].
1335network_tail([D|Ds], N) -->
1336 [arc(p(N),t,D)],
1337 { N1 is N + 1 },
1338 network_tail(Ds, N1).
1339
1340network_connections([], _, _, _) --> [].
1341network_connections([A|As], Betas, [Cs|Css], N) -->
1342 network_connections(Betas, Cs, A, N, 1),
1343 { N1 is N + 1 },
1344 network_connections(As, Betas, Css, N1).
1345
1346network_connections([], _, _, _, _) --> [].
1347network_connections([B|Bs], [C|Cs], A, N, PN) -->
1348 ( { C =:= A + B } -> [arc(N,p(PN),inf)]
1349 ; []
1350 ),
1351 { PN1 is PN + 1 },
1352 network_connections(Bs, Cs, A, N, PN1).
1353
1354alpha_beta(Torso, Sources, Sinks, Costs, Alphas, Betas, Flow) :-
1355 network_connections(Alphas, Betas, Costs, 1, Cons, []),
1356 append(Torso, Cons, Arcs),
1357 edmonds_karp(Arcs, MaxFlow),
1358 mark_hashes(MaxFlow, MArcs, MRevArcs),
1359 all_markable(MArcs, MRevArcs, Markable),
1360 mark_unmark(Sources, Markable, MarkSources, UnmarkSources),
1361 ( MarkSources == [] -> Flow = MaxFlow
1362 ; mark_unmark(Sinks, Markable, MarkSinks0, UnmarkSinks0),
1363 maplist(un_p, MarkSinks0, MarkSinks),
1364 maplist(un_p, UnmarkSinks0, UnmarkSinks),
1365 MarkSources = [FirstSource|_],
1366 UnmarkSinks = [FirstSink|_],
1367 theta(FirstSource, FirstSink, Costs, Alphas, Betas, TInit),
1368 theta(MarkSources, UnmarkSinks, Costs, Alphas, Betas, TInit, Theta),
1369 duals_add(MarkSources, Alphas, Theta, Alphas1),
1370 duals_add(UnmarkSinks, Betas, Theta, Betas1),
1371 Theta1 is -Theta,
1372 duals_add(UnmarkSources, Alphas1, Theta1, Alphas2),
1373 duals_add(MarkSinks, Betas1, Theta1, Betas2),
1374 alpha_beta(Torso, Sources, Sinks, Costs, Alphas2, Betas2, Flow)
1375 ).
1376
1377mark_hashes(MaxFlow, Arcs, RevArcs) :-
1378 assoc_to_list(MaxFlow, FlowList),
1379 maplist(un_arc, FlowList, FlowList1),
1380 flatten(FlowList1, FlowList2),
1381 empty_assoc(E),
1382 mark_arcs(FlowList2, E, Arcs),
1383 mark_revarcs(FlowList2, E, RevArcs).
1384
1385un_arc(_-Ls0, Ls) :-
1386 assoc_to_list(Ls0, Ls1),
1387 maplist(un_arc_, Ls1, Ls).
1388
1389un_arc_(_-Ls, Ls).
1390
1391mark_arcs([], Arcs, Arcs).
1392mark_arcs([arc(From,To,F,C)|Rest], Arcs0, Arcs) :-
1393 ( get_assoc(From, Arcs0, As) -> true
1394 ; As = []
1395 ),
1396 ( C == inf -> As1 = [To|As]
1397 ; F < C -> As1 = [To|As]
1398 ; As1 = As
1399 ),
1400 put_assoc(From, Arcs0, As1, Arcs1),
1401 mark_arcs(Rest, Arcs1, Arcs).
1402
1403mark_revarcs([], Arcs, Arcs).
1404mark_revarcs([arc(From,To,F,_)|Rest], Arcs0, Arcs) :-
1405 ( get_assoc(To, Arcs0, Fs) -> true
1406 ; Fs = []
1407 ),
1408 ( F > 0 -> Fs1 = [From|Fs]
1409 ; Fs1 = Fs
1410 ),
1411 put_assoc(To, Arcs0, Fs1, Arcs1),
1412 mark_revarcs(Rest, Arcs1, Arcs).
1413
1414
1415un_p(p(N), N).
1416
1417duals_add([], Alphas, _, Alphas).
1418duals_add([S|Ss], Alphas0, Theta, Alphas) :-
1419 add_to_nth(1, S, Alphas0, Theta, Alphas1),
1420 duals_add(Ss, Alphas1, Theta, Alphas).
1421
1422add_to_nth(N, N, [A0|As], Theta, [A|As]) :- !,
1423 A is A0 + Theta.
1424add_to_nth(N0, N, [A|As0], Theta, [A|As]) :-
1425 N1 is N0 + 1,
1426 add_to_nth(N1, N, As0, Theta, As).
1427
1428
1429theta(Source, Sink, Costs, Alphas, Betas, Theta) :-
1430 nth1(Source, Costs, Row),
1431 nth1(Sink, Row, C),
1432 nth1(Source, Alphas, A),
1433 nth1(Sink, Betas, B),
1434 Theta is (C - A - B) rdiv 2.
1435
1436theta([], _, _, _, _, Theta, Theta).
1437theta([Source|Sources], Sinks, Costs, Alphas, Betas, Theta0, Theta) :-
1438 theta_(Sinks, Source, Costs, Alphas, Betas, Theta0, Theta1),
1439 theta(Sources, Sinks, Costs, Alphas, Betas, Theta1, Theta).
1440
1441theta_([], _, _, _, _, Theta, Theta).
1442theta_([Sink|Sinks], Source, Costs, Alphas, Betas, Theta0, Theta) :-
1443 theta(Source, Sink, Costs, Alphas, Betas, Theta1),
1444 Theta2 is min(Theta0, Theta1),
1445 theta_(Sinks, Source, Costs, Alphas, Betas, Theta2, Theta).
1446
1447
1448mark_unmark(Nodes, Hash, Mark, Unmark) :-
1449 mark_unmark(Nodes, Hash, Mark, [], Unmark, []).
1450
1451mark_unmark([], _, Mark, Mark, Unmark, Unmark).
1452mark_unmark([Node|Nodes], Markable, Mark0, Mark, Unmark0, Unmark) :-
1453 ( memberchk(Node, Markable) ->
1454 Mark0 = [Node|Mark1],
1455 Unmark0 = Unmark1
1456 ; Mark0 = Mark1,
1457 Unmark0 = [Node|Unmark1]
1458 ),
1459 mark_unmark(Nodes, Markable, Mark1, Mark, Unmark1, Unmark).
1460
1461all_markable(Flow, RevArcs, Markable) :-
1462 phrase(markable(s, [], _, Flow, RevArcs), Markable).
1463
1464all_markable([], Visited, Visited, _, _) --> [].
1465all_markable([To|Tos], Visited0, Visited, Arcs, RevArcs) -->
1466 ( { memberchk(To, Visited0) } -> { Visited0 = Visited1 }
1467 ; markable(To, [To|Visited0], Visited1, Arcs, RevArcs)
1468 ),
1469 all_markable(Tos, Visited1, Visited, Arcs, RevArcs).
1470
1471markable(Current, Visited0, Visited, Arcs, RevArcs) -->
1472 { ( Current = p(_) ->
1473 ( get_assoc(Current, RevArcs, Fs) -> true
1474 ; Fs = []
1475 )
1476 ; ( get_assoc(Current, Arcs, Fs) -> true
1477 ; Fs = []
1478 )
1479 ) },
1480 [Current],
1481 all_markable(Fs, [Current|Visited0], Visited, Arcs, RevArcs).
1482
1496
1497input(Ss, Ds, Costs) -->
1498 integer(NS),
1499 integer(ND),
1500 n_integers(NS, Ss),
1501 n_integers(ND, Ds),
1502 n_kvectors(NS, ND, Costs).
1503
1504n_kvectors(0, _, []) --> !.
1505n_kvectors(N, K, [V|Vs]) -->
1506 n_integers(K, V),
1507 { N1 is N - 1 },
1508 n_kvectors(N1, K, Vs).
1509
1510n_integers(0, []) --> !.
1511n_integers(N, [I|Is]) --> integer(I), { N1 is N - 1 }, n_integers(N1, Is).
1512
1513
1514number([D|Ds]) --> digit(D), number(Ds).
1515number([D]) --> digit(D).
1516
1517digit(D) --> [D], { between(0'0, 0'9, D) }.
1518
1519integer(N) --> number(Ds), !, ws, { name(N, Ds) }.
1520
1521ws --> [W], { W =< 0' }, !, ws. 1522ws --> [].
1523
1524solve(File) :-
1525 time((phrase_from_file(input(Supplies, Demands, Costs), File),
1526 transportation(Supplies, Demands, Costs, Matrix),
1527 maplist(print_row, Matrix))),
1528 halt.
1529
1530print_row(R) :- maplist(print_row_, R), nl.
1531
1532print_row_(N) :- format("~w ", [N]).
1533
1534
1538
1539
1541
1543
1545
1546
1548
1556
1557
1559assignment(Costs, Assignment) :-
1560 length(Costs, LC),
1561 length(Supply, LC),
1562 all_one(Supply),
1563 transportation(Supply, Supply, Costs, Assignment).
1564
1568
1569:- multifile prolog:message//1. 1570
1571prolog:message(simplex(bounded)) -->
1572 ['Using library(simplex) with bounded arithmetic may yield wrong results.'-[]].
1573
1574warn_if_bounded_arithmetic :-
1575 ( current_prolog_flag(bounded, true) ->
1576 print_message(warning, simplex(bounded))
1577 ; true
1578 ).
1579
1580:- initialization(warn_if_bounded_arithmetic).