Did you know ...
Search Documentation:
Predicate #\=/2
HOME
DOWNLOAD
SWI-Prolog
Sources/building
Docker images
Add-ons
Browse GIT
DOCUMENTATION
Manual
Packages
FAQ
Command line
PlDoc
Bluffers
▶
Prolog syntax
PceEmacs
HTML generation
License
Publications
Rev 7 Extensions
TUTORIALS
Beginner
▶
Getting started
Learn Prolog Now!
Simply Logical
Debugger
Development tools
Advanced
▶
Modules
Grammars (DCGs)
clp(fd)
Printing messages
PlDoc
Web applications
▶
Web applications
Let's Encrypt!
Pengines
Semantic web
▶
ClioPatria
RDF namespaces
Graphics
▶
XPCE
GUI options
Machine learning
▶
Probabilistic Logic Programming
External collections
▶
Meta level tutorials
For packagers
▶
Linux packages
COMMUNITY
IRC
Forum & mailing list
Blog
News
Report a bug
Submit a patch
Submit an add-on
Roadmap (on GitHub)
External links
Contributing
Code of Conduct
Contributors
SWI-Prolog items
COMMERCIAL
WIKI
Login
View changes
Sandbox
Wiki help
All tags
library
clp
bounds.pl -- Simple integer solver that keeps track of upper and lower bounds
clp_events.pl
clpb.pl -- CLP(B): Constraint Logic Programming over Boolean Variables
clpfd.pl -- CLP(FD): Constraint Logic Programming over Finite Domains
in/2
ins/2
indomain/1
label/1
labeling/2
all_different/1
all_distinct/1
sum/3
scalar_product/4
#>=/2
#=</2
#=/2
#\=/2
#>/2
#</2
#\/1
#<==>/2
#==>/2
#<==/2
#/\/2
#\//2
#\/2
lex_chain/1
tuples_in/2
serialized/2
element/3
global_cardinality/2
global_cardinality/3
circuit/1
cumulative/1
cumulative/2
disjoint2/1
automaton/3
automaton/8
transpose/2
zcompare/3
chain/2
fd_var/1
fd_inf/2
fd_sup/2
fd_size/2
fd_dom/2
fd_degree/2
in_set/2
fd_set/2
is_fdset/1
empty_fdset/1
fdset_parts/4
empty_interval/2
fdset_interval/3
fdset_singleton/2
fdset_min/2
fdset_max/2
fdset_size/2
list_to_fdset/2
fdset_to_list/2
range_to_fdset/2
fdset_to_range/2
fdset_add_element/3
fdset_del_element/3
fdset_disjoint/2
fdset_intersect/2
fdset_intersection/3
fdset_member/2
fdset_eq/2
fdset_subset/2
fdset_subtract/3
fdset_union/3
fdset_union/2
fdset_complement/2
simplex.pl -- Solve linear programming problems
#\=
(?X, ?Y)
The arithmetic expressions
X
and
Y
evaluate to distinct integers. When reasoning over integers, replace
(=\=)/2
by
#\=/2
to obtain more general relations. See
declarative integer arithmetic
.